
Calculus 2, University of Groningen H.M. Goossens

Lecture 1

Definitions:

Coordinate axis:x, y, z− axis, perpendicular to eachother, throughO
Coordinate planes: 3 options:

(1)xy−plane: (2)xz−plane: (3) yz−plane:
containsx− and y− axis. :containsx− and z− axis. contains y− and z− axis.

Octants: the eight parts in space, divided by the coordinate planes.
First octant: determined by the positive axes.
PointP has the ordered triple (a, b, c) whereCoordinates a, b, c: a =x-coordinate,b =y-coordinate&c = z-
coordinate.
Projection ofP : when projection onxz−plane,y− coordinate equals 0, works same way for yz− andxy−plane.
three-dimensional rectangular coordinate system: system where one-to-one correpson-
dence between a point and ordered triplets (a, b, c) ∈ R3

Surface inR3: in 3d analytic geometry, an equation inx, y, z

displacement vector v denoted by v or~v the vector repreesents the movement along a line seg-
ment.
Initial point: tail of vector andterminal point: the tip. Write v = ~AB
u = vEquivalent or equal: same length, same direction, same possition not necessory.
zero vector0 length 0
~AC = ~AB + ~AC

New formula’s

Distance formula in three dimensions: distance |P1P2|betweenP1(x1, y1, z1) andP2(x2, y2, z2) is:
|P1P2| =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Equation of a sphere: Equation sphere with centerC(h, k, l) and radius r:
(x− h)2 + (y − k)2

(z − l)
2 = r2

When center=O then:x2 + y2 + z2 = r2

Algebra vectors (1):

Definition of vector addition: u&v vectors possitioned s.t. initial point v = terminal point v then u+
v vector initial point u to terminal point v
Parallelogram Law: u + v = v + u
Scaler: a real number with which we multiply something. In this case a vector.
Definition scaler multiplication: c scaler v vector then: (1) scaler multiple cv vector whose length |c| times
length of v
(a) Same direction as v if c > 0
(b) opposite if c < 0
(c) c = 0 or v = 0 then cv = 0
Parallel: two vectors if scaler multiples one another.
Negative of v same length as v opposite direction:−v = (−1)v
Differenceu− v = u + (−v)
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Components:

terminal a @origin, then coordinates calledcomponents:
R2 R3

〈a1, a2〉 〈a1, a2, a3〉
Representations: gives an image of a vector.

vector representation:A(x1, y1, z1) andB(x2, y2, z2) then
−−→
AB = a = 〈x− 2− x1, y2 − y1, z2 − z1〉

Position vector of pointP :
−−→
OP

Length of magnitude: v denoted by |v| or ‖v‖ the length of any representations:

R2 a = 〈a1, a2〉 |a| =
√
a2

1 + a2
2

R3 a = 〈a1, a2, a3〉 |a| =
√
a2

1 + a2
2 + a2

3

Algebra vectors (2):

a = 〈a1, a2〉&b = 〈b1, b2〉 then:
(-) a + b = 〈a1 + b1, a2 + b2〉
(-) a− b = 〈a1 − b1, a2 − b2〉
(-) ca = 〈ca1, ca2〉
a = 〈a1, a2, a3〉&b = 〈b1, b2, b− 3〉
(-) a + b = 〈a1 + b1, a2 + b2, a3 + b3〉
(-) a− b = 〈a1 − b1, a2 − b2, a3 − b3〉
(-) ca = 〈ca1, ca2, ca3〉

Properties of vectors: a,b, c vectors inVn andα, β scalers:
a + b = b + a a + (b + c) = (a + b) + c

a + 0 = a a + (−a) = 0
α(a + b) = αa + αb (α+ β)a = αa + βa

(αβ)a = α(βa) 1a = a

Definitions:

Standard basis vectors: i, j,k where i = 〈1, 0, 0〉,j = 〈0, 1, 0〉 and k = 〈0, 0, 1〉
If a = 〈a1, a2〉 then a = a1i + a2j If a = 〈a1, a2, a3〉 then a = a1i + a2j + a3k
Unit vector: vector length 1. For example i, j&k
if a 6= 0 then unit vector same direction as a is: u = a

|a|

applications:

Resultant force: the sum of the forces experienced by the object.
Example: 100-lb weight. Find T1&T2 and the magnitudes.

From this figure, we see that:
T1 = −|T1| cos(50◦)i + |T1| sin(50◦)j
T2 = −|T2| cos(32◦)i + |T2| sin(32◦)j
T1 + T2 = w = −100j

After some algebra we find that |T1| 100
sin 50◦+tan 32◦ cos 50◦ and |T2| = |T1| cos 50deg

cos 32deg

And T1 ≈ −55.06i + 65.60j&T2 ≈ 55.05i + 34.40j
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Dot product:

definition:a = 〈a1, a2, a3〉&b = 〈b1, b2, b3〉 thenDot product
(-) a · b = a1b1 + a2b2 + a3b3
(-) 〈a1, a2〉 · 〈b1, b2〉 = a1b1 + a2b+ 2
Scaler product (or inner product) other name dot product because a · b ∈ R
Properties dot product: a.b&c ∈ V3 andα scaler then:

(1) a · a = |a|2 (2) a · b = b · a (3) a · (b + c) = a · b + a · c
(4) (αa) · b = α(a · b) = a · (αb) (5) 0 · a = 0

angle θ between the vectorsa&b starts at the origin where 0 ≤ θ ≤ π, if a&b parallel then θ =
0 or θ = π
Theorem: θ angle between vectors a&b then a · b = |a||b| cos(θ)
Proof:

|AB|2 = |OA|2 + |OB|2 − 2|OA||OB| cos(θ)
Because |OA| = |a|, |OB| = |b| and |AB| = |a− b|
⇒ |a− b|2 = |a|2 + |b|2 − 2|a||b| cos(θ)
using the given properties, we can conclude the theorem.
Corollary: cos(θ) = a·b

|a||b|
Perpendicalor or orthogonal: if angle between the vectors is θ − π

2 so when a · b = 0

Direction angles and direction cosines:

Direction angles:α, β, γ in above figure. (angle that a makes with the positivex−, y−, z− axes.)
Direction cosines: the cosine of the direction angles:
(-) cos(α) = a·i

|a||i| = a1
|a|

(-) cosβ = a2
|a|

(-) cos γ = a3
|a|

Bu squaring we see that cos2 α+cos2 β+cos2 γ = 1 so a = 〈|a| cosα, |a| cosβ, |a| cos γ〉 = |a|〈cosα, cosβ, cos γ}
so 1
|a|a = 〈cosα, cosβ, cos γ〉

Projections:

Scaler projection of vector b onto vector a: compab = a·b
|a|

Vector projection of vector b onto vector a: compab = (a·b
|a| )

a
|a| = a·b

|a|2 a
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Applications:

Concstant force vector:F
Displacement vector:D
Work: product of component of hte force along D and the distance moved.
W = (|F| cos(θ)|D| = |F||D| cos(θ) = F ·D

Cross product:

Cross product:a = 〈a1, a2, a3〉&b = 〈b1, b2, b3〉, then a×b = 〈a2b3−a3b2, a3b1−a1b3, a1b2−a2b1〉
Only when a&b three dimensional vectors.

Determinant order 2:

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

Determinant of order 3:

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2

∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣
So if a = a1i + a2j + a3k and b = b1i + b2j + b3k then we can say that:

a× b =

∣∣∣∣a2 a3

b2 b3

∣∣∣∣ i− ∣∣∣∣a1 a3

b1 b3

∣∣∣∣ j +

∣∣∣∣a1 a2

b1 b2

∣∣∣∣k =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
Orthogonal: The vector a× b is orthogonal to a&b
Proof:
Just 1 part:

(a×b) ·a =

∣∣∣∣a2 a3

b2 b3

∣∣∣∣ ·a1−
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ ·a2 +

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ ·a3 = a1(a2b3−a3b2)−a2(a1b3−a3b1)+a2(a1b2−

a2b1) = 0 so orthogonal.
angle between vectors and cross product: |a× b| = |a||b| sin(θ)
Proof:
|a× b|2 = (a2b3− a3b2)2 + (a3b1− a1b3)2 + (a1b2− a2b1)2 = (a2

1 + a2
2 + a2

3) + (b21 + b22 + b23)− (a1b1 +
a2b2 + a3b3+2

= |a|2|b|2 − (a · b)2 = |a|2|b|2 − |a|2|b|2 cos2 θ

= |a|2|b|2(1− cos2(θ)

|a|2|b|2 sin2(θ)
Take the square root of both sides and you see the result like in the theorem.
Parallel:a× b = 0
Length cross product a× b equal to the area determined by a&b

Algebra cross products:

For the standard basis vectors:
i× j = k j× k = i k× i = j

j× i = −k k× j = −i i× k = −j

term 2A 2020-2021 Page 4



Calculus 2, University of Groningen H.M. Goossens

For a,b, c vectors and scalerα:
(1) a× b = −b× a (2) (αa)× b = α(a× b) = a× (αb)

(3) a× (b + c) = a× b + a× c (4) (a + b)× c = a× c + b× c
(5) a · (b× c) = (a× b) · c (6) a× (b× c) = (a · c)b− (a · b)c

Triple product:

Triple product:a · (b× c) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
Volume parallelepiped: determined by a,b, c:V = |a · (b× c|

Lines:

Triangle law for vector addition: r = r0 + a
Since a&v parallel, exists scaler t s.t. a = tv so: r = r0 + tv
Where this last equation is calledVector equation of L
Parameter: t gives position vector r
r can also be written as r = 〈x, y, z〉
When tv = 〈ta, tb, tc〉 and r0 = 〈x0, y0, z0〉 then: 〈x, y, z〉 = 〈x0 + ta, y0 + tb, z0 + tc〉
Parametic equations:
(-)x = x0 + at
(-) y = y0 + bt
(-) z = z0 + ct
where t ∈ R andL throughP (x0, y0, z0) and parallel to 〈a, b, c〉
Each value of t gives a point onL
a, b, c are called direction numbers ofL
Summetric equations: x−x0

a = y−y0
b = z−z0

c
Line segement from r0 to r1 given by:
r(t) = (1− t)r0 + tr1 where 0 ≤ t ≤ 1
Skew lines: lines that doe no intersect.
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Planes:

normal vectorn orthogonal to the plane.

LetP (x, y, z) arbitrary plane and r0, r position vectors ofP0 andP then r− r0 =
−−→
P0P

We see then thatn · (r− r0) = 0⇔ n · r = n · r0

These equations are calleed the vector equation of the plane.
scaler equation of the plane troughP0(x0, y0, z0) with n = 〈a, b, c〉 is: a(x − x0) + b(y − y0) +
c(z − z0) = 0
Then we can write this plane to: ax+ by + cz + d = 0
WhereLinear equation in x, y, z: d = −(ax0 + by0 + cz0)

DistanceD from the pointP1(x1, y1, z1) to the plaine ax+by+cz+d = 0:D = |ax1+by1+cz1+d|√
a2+b2+c2
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Lecture 2

3 dimensional planes:

Traces: curves intersection surface with planes⊥ coordinate plane.rullings: lines in a surface
quadric surface: second degree equations in 3 variablesx, y, z and with constants:A, . . . , J
General form:Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Iz + J = 0
Standard form 1:Ax2 +By2 + Cz2 + J = 0 Standard form 2:Ax2 +By2 + Cz + j = 0

Name Definition Formula Image
Cylinder surface that consist rullings

Parallel given line,through a given plane

Cone Horizontal traces ellipses z2

c2 = x2

a2 + y2

b2

Vertical tracesx = k and y = k hyperbolas
if k 6= 0 otherwise pairs of lines

Parabolic made of inf. many shifted
cylinder copies parabola

Ellipsoid Traces are ellipses x2

a2 + y2

b2 + z2

c2 = 1
a = b = c? Sphere

Elliptic Horizontal traces ellipses z
c = x2

a2 + y2

b2

Paraboloid Verticle traces parabolas variable to first power
indicate axis parabaloid

Hyperbolic Horizontal traces parabolas z
c = y2

b2 −
x2

a2 case where c < 0
Paraboloid Vertical traces parabolas

Hyperboloid Horizontal traces ellipses x2

a2 + y2

b2 −
z2

c2 = 1
of one sheet: Vertical traces hyperbolas

negative variable is axis symmetry

Hyperboloid Horizontal in z = k ellipses if k > c or k < −c −x
2

a2 −
y2

b2 + z2

c2 = 1
of two sheets Vertical traces hyperbolas

two minus signs: two sheets
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Vector functions:

Vector functions:mapsR toRn
component functions: I ⊂ R and : I → Rn and t→ 〈r1(t), . . . , rn(t)〉
Example: n = 3 then r(t) = 〈g(t), h(t), k(t)〉
Definition 1:
If r(t) = 〈f(t0 < g(t), H(t)〉 then lim

t→a
r(t) =〉 lim

t→a
f(t), lim

t→a
g(t), lim

t→a
h(t)〉

Provides, limits of component functions exists.

Proof:
recall f(t) = f1(t), g(t) = f2(t) andh(t) = f3(t)
0 < |t− a| < ∆⇒ ‖r(t)− L‖ < ε
∃δi > 0 s.t. 0 < |t− a| < δi ⇒ |fi(t)− Li| < ε√

3
for i = 1, 2, 3

Set δ = min{δi} so then ‖r(t)− L‖ =

√
3∑
i=1

(fi(t)− Li)2 ≤
√

ε2

3 + ε2

3 + ε2

3 = ε

Distance vectors: u,v ∈ Rn defined by ‖u− v‖ =

√
n∑
i=1

(ui − vi)2

Continuous: r : I → Rn continuous at a ∈ I if lim
t→a

r(t) = r(a)

Space curve:C = r(I) where I ⊂ R interval and r : I → R3 where r theparimacterisation ofC
New spaces in this chapter without explanations:
Helix, toroidal spiral (lies on torus), trefoil knot, twisted cube
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Lecture 3:

Definition 1:
Derivative r′(t) defined as drdt = r′(t) = lim

h→0

r(t+h)−r(t)
h

Remarks:
�r′(t) = tangent vector of the curveC = r(I) at the point r(t) where t ∈ I
�Unit tangent vectorT(t) = r′(t)

|r′(t)| as long as r′(t) 6= 0

Theorem 2:
If r(t) = 〈f(t), g(t), h(t)〉 = f(t)i + g(t)j + h(t)k where f, g, h differentiable:
r′(t) = 〈f ′(t), g′(t), h′(t)〉 = f ′(t)i + g′(t)j + h′(t)k
Remarks:
� second derivative also possible: r”(t) = (r′(t))′

Theorem 3:
u,v are vectors, c is a scaler and f real valued function:

1 d
dt [u(t) + v(t)] = u′(t) + v′(t)

2 d
dt [cu(t)] = cu′(t)

3 d
dt [f(t)u(t)] = f ′(t)u(t) + f(t)u′(t)

4 d
dt [u(t) · v(t)] = u′(t) · v(t) + u(t) · v′(t)

5 d
dt [u(t)× v(t)] = u′(t)× v(t) + u(t)× v′(t)

6 d
dt [u(f(t))] = f ′(t)u′(f(t))

Integrability,arclength and reparemeterization:

Integrability: vector function integrable on interval I ⇔ components integrable on I
b∫
a

r(t)dt = (
b∫
a

f(t)dt)i + (
b∫
a

g(t)dt)j + (
b∫
a

h(t)dt)k

I = [a, b] and r : I → R3 continous differentiable s.t. r′(t) exists. Then r is of classC1

We know that the length of a vector functionSi is given by: ∆Si = ‖r(ti)− r(ti−1)‖
Where ∆xi = f(ti)− f(ti−1) and ∆yi = g(ti)− g(ti−1) and ∆zi = h(ti)− h(ti−1)
So ∆Si =

√
∆x2

i + ∆y2
i + ∆z2

i

Arclength ofC ′ = r(I): lim
max ∆ti→0

n∑
i=1

∆Si

Theorem 1 R2 L =
b∫
a

√
[f ′(t)]2 + [g′(t)]2dt =

b∫
a

√
(dxdt )2 + (dydt )2dt

Theorem 2 R3 L =
b∫
a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2dt =

b∫
a

√
(dxdt )2 + (dydt )2 + (dzdt )

2dt

We can rewrite this all toL =
b∫
a

|r′(t)|dtTheorem 3

If r(t) = f(t)i(t) + g(t)j + h(t)k where a ≤ t ≤ b and r(t) is at least of classC1 then:

Theorem 6,7:Arc length function: s(t) =
t∫
a

|r′(u)|du =
t∫
a

√
( dxdu )2 + ( dydu )2 + ( dzdu )2du so then

we see that dsdt = |r′(t)|
parameterize a curve w.r.t. its arc length: usefull method. Set the arc length equal to a
function s(t) and subsitute t = s(t) in the original vector function.
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Example:

A single curve can be represented by more then 1 vector function. For example:
theorem 4: (1) r1(t) = 〈t, t2, t3〉where 1 ≤ t ≤ 2
theorem 5: (2) r2(u) = 〈eu, e2u, e3u〉where 0 ≤ u ≤ ln(2)
Gives exactly the same graph

Independent length:
Lenght of curveC ′ does not depend on the parameterization in the following sense:
b∫
a

∥∥dr
dt

∥∥dt =
d∫
c

∥∥ dr̃
du

∥∥du
h : [a, b]→ [c, d]C ′ and bijective. so t→ u = h(t) s.t. r(t) = r̃(h(t))
Proof:

recall substitution rule integrals.
b∫
a

f(g(x))g′(x)dx =
g(b)∫
g(a)

f(u)du

b∫
a

∥∥dr
dt

∥∥dt =
b∫
a

∥∥∥dr̃(h(t))
dt

∥∥∥dt =
b∫
a

‖r̃′(h(t)) · h′(t)‖dt

=
b∫
a

‖r̃′(h(t))‖|h′(t)|dt =


b∫
a

‖r̃′(h(t))‖|h′(t)|dt, h′ ≥ 0

−
b∫
a

‖r̃′(h(t))‖|h′(t)|dt, h′ < 0

=
∫ d
c

∥∥ dr̃
du (u)

∥∥du = du

Because when first case a→ c and b→ d so then r = r̃
Second case a→ d and b→ c so then r→ −r̃
Note:

One natural parameterization of a curve is parameterization by arclength: s(t) =
t∫
a

‖r′(t)‖dt = length

of the position of the curve cbetween the points r(a) and r(t)
s(t) resp. corresponds toh(t) resp. to u in proposition above. Then c = 0 and d = L
Remarks:
ds
dt = ‖r′(t)‖
in phyiscs: ds

dt corresponds to the norm of the velocity vector, which we call speed.

term 2A 2020-2021 Page 10



Calculus 2, University of Groningen H.M. Goossens

Lecture 4:

Curvature:

Smooth curve if the curve has a smooth parameterization: r′(t) is continuous and r′(t) 6= 0

Recall: Unit tangent: Indicates direction of curve: T(t) = r′(t)
|r′(t)|

Definition 8:Curvature:The rate of change of unit tangent vector w.r.t. arc length. curve of
classC2 whereκ =

∣∣dT
ds

∣∣
Theorem 9 and 10 when we substitute ds

dt = |r′(t)| and after that fill in the formula for the unit

tangent vector we findκ(t) =
|T′(t)|
|r′(t)| =

|r′(t)×r”(t)|
|r′(t)|3

Theorem 11: when we have the curvature y = f(x) thenκ(x) = |f”(x)|
[1+(f ′(x))2]1.5

Moving frames and torsion:

LetC : r : I → R3 of classC3 then we can find 4 mutually orthogonal vectors of length 1 at each
point ofC
Unit tangent vector:T(r) = 1

‖r′(t)‖r
′(t)

(Principal) unit normal (vector): direction in which the curve is turning at each point. N(t) =
T′(t)
|T′(t)|
Binormal vector:perpendicular to T and N defined by B(t) = N(t)×T(t)
Normal plane: the blane determine by N and B at a pointP on a curveC
Osculating plane:The plane determined by T and N ofC at a pointP
Osculating circle/circle of curvature: circle lies in oscolating plane, same tangetn atC atP
on the side on towards N points, and has radius ρ = 1

κ

Torsion: (τ) which we can find by Definition 13 τ = −dBds N = −τN measures how spatial (non
planair) a curve is.
,or Definition 12: dBds = −τN
Definition 14: τ(t) = −B′(t)·N(t)

|r′(t)|
It can be shown that: dTds = κN and dB

ds = −τN but dNds = −κT + τB

So

T′

N′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B

which is called the Frenet-serret equations.

Torsion of a curve by the vector function:Theorem 15: τ(t) = [r′(t)×r”(t)]·r′”(t)

|r′(t)×r”(t)|2

Example:

r : [−1, 1]→ R2 so t→ 〈t3, t2〉 so y = x gives t2 = t3 so t =
√
t3

r(t) = a cos(t)i + a sin(t)j + btk where a, b ≥ 0

T(t) = 1
‖r′(t)‖r

′(t) = −a sin(t)i+a cos(t)j+bk√
a2+b2

N(t) = 1
‖T′(t)‖T

′(t) =

−a cos(t)i−a sin(t)j√
a2+b2

a√
a2+b2

= − cos(t)i− sin(t)j

κ =
‖T′(t)‖
‖r′(t)‖ = a

a2+b2

The curvuture of a circle is given by 1
r where r = radius.

B = T×N = ( b√
a2+b2

sin(t))i− ( b√
a2+b2

cos(t))j + a√
a2+b2

k

term 2A 2020-2021 Page 11



Calculus 2, University of Groningen H.M. Goossens

Note: dBdt = ( b√
a2+b2

cos(t))i + ( b√
a2+b2

sin(t))j

So we see that this vector is parallel to N

Application: linear approximation:

r : I ⊂ R→ Rn different at t ∈ I so:
∃v ∈ Rn s.t. lim

h→0

r(t+h)−r(t)
h = v

⇔ ∃v ∈ Rn s.t. lim
τ→0

r(τ)−r(t)
τ−t = v

⇔ ∃v ∈ Rn s.t. lim
τ→t

r(τ)−(r(t)+v(τ−t))
τ−t = 0

⇔ r(t) + v(τ − t) the linear approximation of the function r at r(t)
L(τ) = r(t) + v(τ − t) so the linearisation of r
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Lecture 5:

functions:

Definition let (x, y)→ f(x, y) Then:
Domain: (x, y) ∈ D thenD domain.
Range: {f)x, y)|(x, y) ∈ D}
When we have z = f(x, y) thenx, y Independent variables and zDependent variables.
Graph: if f function two variables with domainD thenGraph set of all points (x, y, z) ∈ R3 s.t. z =
f(x, y) and (x, y) ∈ D
Level curves: f two variables are the curves with equations f(x, y) = k where k constant in range f
contour/level map: collection of level curves.
Function of 3 variables: ordered triple (x, y, z) ∈ D ⊂ R3 whereD domain assings to a unique
real number f(x, y, z)
Half-space consisting all points above plane, z = y:D = {(x, y, z) ∈ R3|z > y}
Level surfaces: surfaces s.t. f(x, y, z) = kwhere k a constant.

Example:

A company usesn different ingedients in making a food product, where ci is the cost per unit of
the ith ingredient, you needxi units of the ith ingredient, then the total cost:
C = f(x1, . . . , xn) = c1x1 + . . .+ cnxn
We can rewrite this to f(x) = c · x
There are three ways of looking at a function f defined on subsetRn:
(1) function real variablesx1, . . . , xn (2) function single point variable (x1, . . . , xn)
(3) function single vector variable x = 〈x1, . . . , xn〉

Limits and continuous

Definition 1: f function 2 variables, domainD includes points arbitrarily close to (a, b). ThenLimit
of f(x, y) as (x, y)→ (a, b) is L: if for every ε > 0 there∃δ > 0 s.t.:
if (x, y) ∈ D and 9 <

√
(x− a)2 + (y − b)2 < δ ⇒ |f(x, y)− L| < ε

Notation: lim
(x,y)→(a,b)

f(x, y) = lim
x→a
y→b

= L and f(x, y)→ L as (x, y)→ (a, b)

Existence of a limit:
If f(x, y)→ L1 as (x, y)→ (a, b) along a pathC1 and f(x, y)→ L2 as (x, y)→ (a, b) along a pathC2 whereL1 6=
L2 then lim

(x,y)→(a,b)
f(x, y) does not exist.

Example:

1:
f : R2 → R
(x, y)→ 3x− 5y show lim

(x,y)→(1,−1)
f(x, y) = 8

Let ε > 0 to be shown,,̇∃δ > 0 s.t. 0 < ‖(x, y)− (1,−1)‖ < δ implies |3x− 5y − 8| < ε

|x− 1|
|y + 1|

}
≤ ‖(x, y)− (1,−1)‖ =

√
(x− 1)2 + (y + 1)2 < δ it follows that |3x− 5y − 8| = |3(x+ 1)− 5(y + 1)| ≤

|3(x− 1)|+ |−5(y + 1)| = 3|x− 1|+ 5|y + 1|
We know that |x− 1| < δ and |y + 1| < δ
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So we see that ‖(x, y)− (1,−1)‖ ≤ 8δ so then we can set ε = δ
8 so then we see that

‖(x− y)− (1,−1)‖ < ε
2:
f : R2 \ {(0, 0} → R
(x, y)→ f(x, y) = x2−y2

x2+y2 does this function have a limit at (x, y) = (0, 0)?

f(x, 0) = x2

x2 = 1 true for allx 6= 0

f(0, y) = −y2
y2 = −1 for all y 6= 0

f has no limit at the the point (x, y) = (0, 0)
3:
Sometimes polar coordinates useful to decide whether function has limit.
x = r cos(θ) and y = r sin(θ)

does f(x, y) = x3+x5

x2+y2 have a limit at the origin?

x3+x5

x2+y2 = r3 cos3(θ)+r5 cos5(θ)
r2 cos2(θ)+r2 sin2(θ)

= r(cos3(θ) + r2 cos5(θ)) = r cos(θ)(cos2(θ) + r2 cos4(θ))

Because |cos(θ)| ≤ 1 for all θ
Hence:
−r(1 + r2) ≤ r cos(θ)(cos2(θ) + r2 cos4(θ)) ≤ r(1 + r2)
Whenx, y → 0 we know that r → 0 and therefore−r(1 + r2)→ 0 and r(1 + r2)→ 0 so by squeezing
theorem: lim

(x,y)→(0,0)
f(x, y)→ 0

Properties of limits:

Sum Law lim[f(x) + g(x)] = lim f(x) + lim g(x)
Differnece law lim[f(x)− g(x)] = lim f(x)− lim g(x)

Constant multiple lim[cf(x)] = c lim f(x)
Product law lim[f(x)g(x)] = lim f(x) lim g(x)

Quotient rule lim[ f(x)
g(x) ] = lim f(x)

lim g(x) where lim g(x) 6= 0

2(& below) lim
(x,y)→(a,b)

x = a

lim
(x,y)→(a,b)

y = b

lim
(x,y)→(a,b)

c = c

Polynomial fucntion: sum of terms of the form cxmyn where c constant andm,n ≥ 0
Rational function: ratio two polynomials.

Definition 3: lim
(x,y)→(a,b)

p(x, y) = p(a, b)

Definition 4: lim
(x,y)→(a,b)

q(x, y) = lim
(x,y)→(a,b)

p(x,y)
r(x,y) = p(a,b)

r(a,b) = q(a, b)

Definition 6: f continuous at (a, b) if lim
(x,y)→(a,b)

f(x, y) = f(a, b). Continuous on domainD if it is

continuous at every (a, b) ∈ D
Definition 7: f defined on subsetD ofRn then lim

x→a
f(x) = Lmeans:

∀ε > 0∃δ > 0 s.t. x ∈ D and 0 < |x− a| < δ then |f(x)− L| < ε
Continuity of a vector:
a ∈ D and lim

x→a
f(x) = f(a) then f continuous at a
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Derivatives of functions:

Definition 4:
Definition 1 and 2:Partial derivative of f w.r.t. x fx(a, b) = g′(a) where g(x) = f(x, b) so fx(a, b) =

lim
h→0

f(a+h,b)−f(a,b)
h

Definition 3:Partial derivative of f w.r.t. y ,fy(a, b) = lim
h→0

f(a,b+h)−f(a,b)
h

Notation:
fx(x, y) = fx = δf

δx = δ
δxf(x, y) = δz

δx = f1 = D1f = Dxf

fy(x, y) = fy = δf
δy = δ

δyf(x, y) = δz
δy = f2 = D2f = Dyf

Rules:
To find fx regard y constante, differentiate f(x, y) w.r.t.xFinding fy similar.

Ifu = f(x1, . . . , xn) then δu
δxi

= lim
h→0

f(x1,...,xi−1,xi+h,...,xn)−f(x1,...,xn)
h = δf

δxi
= fxi = fi = Dif

Example:

D ⊂ R2 where f(x, y) = 4− x2 − 2y2

fx(1, 1) = lim
h→0

f(1+h,1)−f(1,1)
h = lim

h→0

−2h−h2

h = lim
h→0
−2− h = −2

Similary fy(1, 1) = −4

CruveC ′1 parameterization: r1 = x→ (x, 1, f(x, 1)) = (x, 1, 4− x−2) = (x, 1, 2− x2)

Higher derivatives:

We can also compute the second partial derivative:

(fx)x = fxx = f11 = δ
δx ( δfδx ) = δ2f

δx2 = δ2z
δx2

(fx)y = fxy = f12 = δ
δy ( δfδx ) = δ2f

δxδy = δ2z
δxδy

(fy)y = fyy = f22 = δ
δy ( δfδy ) = δ2f

δy2 = δ2z
δy2

(fy)x = fyx = f21 = δ
δx ( δfδy ) = δ2f

δyδx = δ2z
δyδx

Clairaut’s theorem: Suppose f defined on diskD that contains (a, b). If fxy and fyx both continuous
onD then fxy(a, b) = fyx(a, b)

Harmonic functions: solution of theLaplace’s equation: δ
2u
δx2 + δ2u

δy2 = 0

Wave equation: δ
2u
δt2 = a2 δ2u

δx2 decribes motion of waveform.

Tangent plane,linear approximation:

Definition 2: f continuous partial derivative. Then equation tangent plane surface z = f(x, y) atP (x0, y0, z0) =
fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)
Linearization:Definition 3:L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)
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Linear approximation or tangent plane approximation:
R2 Definition 4: f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)
R3 f(x, y, z) ≈ f(a, b, c) + fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c)
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Lecture 6:

Differentiability:

Theorem 5: f differentiable at a then ∆y = f ′(a)∆x+ ε∆xwhere ε→ 0 as ∆x→ 0

Increment: change in value of f when (x, y) changes from (a, b) to (a+∆x, b+∆y):
R2 textbfDefinition 6: ∆z = f(a+ ∆x, b+ ∆y)− f(a, b)
R3 ∆w = f(x+ ∆x, y + ∆y, z + ∆z)− f(x, y, z)

Differentiable:
(1) Definition 7: If z = f(x, y) then f differentiable at (a, b) if:
∆z = fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y
When (∆x,∆y)→ (0, 0) then ε1&ε2 → 0
(2) Theorem 8: if partial derivatives fx and fy exists near (a, b) and continuous at (a, b) then f differentiable
at (a, b)

Differentials:

We already now that the differential of y is defined as dy = f ′(x)dxwhen y = f(x) Definition 9.
Total differential
R2 Definition 10: dz = fx(x, y)dx+ fy(x, y)dy = δz

δxdx+ δz
δydy

R3 dw = δw
δx dx+ δw

δy dy + δw
δz dz

Chain rule:

Theorem Cpnditions The chain rule etc.

Theorem 1: z = f(x, y),x = g(t),y = h(t) dz
dt = δf

δx
dx
dt + δf

δy
dy
dt equal to dz

dt = δz
δx

dx
dt + δz

δy
dy
dt

Theorem 2: z = f(x, y) δz
δs = δz

δx
δx
δs + δz

δy
δy
δs Indep.var.: s&t

,x = g(s, t) and y = h(s, t) δz
δt = δz

δx
δx
δt + δz

δy
δy
δt Inter. var.:x, y

Dep. var.: z

Theorem 3 u = (x1, . . . , xn) δu
δti

= δu
δx1

δx1

δti
eachxj differentiable

+ . . .+ δu
δxn

δxn
δti

on t1, . . . , tm

Implicit Function theorem:

Theorem 5:
dy
dx = −

δF
δx
δF
δy

= −FxFy
Conditions:
(1)F defined on a disk containing (a, b)
(2)F (a, b) = 0,butFy(a, b) 6= 0
(3)Fx andFy continuous on disk.
⇒ thenF (x, y) = 0 deifnes y as function ofx near (a, b) derivative given by function above.

Theorem 6: similar to 5:
δz
δx = −

δF
δx
δF
δz

− 0FxFy and δz
δy =

δF
δy
δF
δz

= −FyFz
WhereF on sphere containing (a, b, c) andF (a, b, c) = 0 andFz(a, b, c) 6= 0 andFx, Fy, Fz continuous
inside sphere, thenF (x, y, z) = 0 defines z as functionx and y near (a, b, c) then function differentiable.
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Lecture 7:

Direction derivative:

Two dimensional:

14.6:
Theorem 1:
z = f(x, y) then we have:

fx(x0, y0) = lim
h→0

f(x0+h,y0)−f(x0,y0)
h and fy(x0, y0) = lim

h→0

f(x0,y0+h)−f(x0,y0)
h partial derivatives.

Directional derivatives:
fx(x0, y0) is rate of change z in direction ofx so the direction of unit vector j (similar for fy(x0, y0) and z)
Theorem 2:Direction derivative of f at (x0, y0) in the direction of unit vector u = 〈a, b〉 is:
Duf(x0, y0) = lim

h→0

f(x0+ha,y0+hb)−f(x0,y0)
h if this limit exists

Theorem 3:Duf(x, y) = fx(x, y)a+ fy(x, y)bwhere u = 〈a, b〉 and fu the directional derivative.
Definition 8Gradient: if f function 2 variables, thenGradient of: f
Of(x, y) = 〈fx(x, y), fy(x, y)〉 = δf

δx i + δf
δy j

Rewriting 7:
Duf(x, y) = fx(x, y)a+ fy(x, y)b = 〈fx(x, y), fy(x, y)〉 · 〈a, b〉 = 〈fx(x, y), fy(x, y)〉 · u
Definition 9:Duf(x, y) = Of(x, y) · u

3 dimensional:

Theorem 10:directional derivatives: f at (x0, y0, z0) of u = 〈a, b, c〉 is:

D)uf(x0, y0, z0) = lim
h→0

f(x0+ha,y0+hb,z)+hc)−f(x0,y0,z0)

h if limit exists.

Theorem 11:Duf(x0) = lim
h→0

f(x0+hu)−f(x0)
h

Theorem 12:Duf(x, y, z) = fx(x, y, z)a+ fy(x, y, z)b+ fz(x, y, z)c

Theorem 13:Gradient:Of = 〈fx, fy, fz〉 = δf
δx i + δf

δy j + δf
δzk

Theorem 14:Duf(x, y, z) = Of(x, y, z) · u

maximize

Theorem 15: suppose f differentiable function 2 or 3 variables. Maximum value ofDuf(x) =
|Of(x)| and it occurs when u same direction asOf(x)

Example:

f : R2 → R by f(x, y) = x2 + y2

SoOf(x0, y0) = (2x0, 2y0)
So the levels will be circles. When we draw the vectors, we see that the vector is perpendicular to
the tangent line at the circle.
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Tangent plane level surfaces:

LetS surface with equationF (x, y, z) = k. So level surface functionF . LetP (x0, y0, z0) onS.
LetC any curves onS throughP . ThenC : r(t) = 〈x0, y0, z0〉. Let t0 correspond toP so:
r(t0) = 〈x0, y0, z0〉 but we can rewrite this to:
Statement 16:F (x(t), y(t), z(t)) = k and whenF differentiable then by chain rule:
Statement 17: δFδx

dx
dt + δF

δy
dy
dt + δF

δz
dz
dt = 0

But therefore Statement 18:OF (x0, y0, z0) · r′(t0) = 0
Theorem 19:Tangent plane to level surfaces: ifOF (x0, y0, z0) 6= 0 then the tangent plane
is equal to:Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0
Normal line: toS atP is the line throughP perpendicular toS given by:
Theorem 20: x−x0

Fx(x0,y0,z0) = y−y0
Fy(x0,y0,z0) = z−z0

Fz(x0,y0,z0)

Properties of gradient:

Let f differentiable andOf(x) 6= 0 then:
(1)Directional derivativeDuf(x) = Of(x) · u
(2)Of(x) points in direciton maximum rate increasing f at x and maximum rate |Of(x)|
(3)Of(x) perpendicular to level curve or level surfaces of f through x

maxima and minima:

14.7:
Definition 1: Function 2 variables then:
Local maximum(minimum) at (a, b) if f(x, y) ≤ (≥)f(a, b) when (x, y) near (a, b)
So f(x, y) ≤ (≥)f(a, b) for all points (x, y) in some disk with center (a, b).
Local maximum (minimum) valuename of f(a, b) in this case.
Theorem 2: f local maximum or minimum at (a, b) and first order partial derivatives f exists at (a, b) then fx(a, b) =
0 and fy(a, b) = 0
Critical point or stationary: of f if fx(a, b) = 0 and fy(a, b) = 0 or one of these partial deriva-
tives does not exists.
So thenOf(a, b) = 0
Saddle point: if fx(a, b) = fy(a, b) = 0 but f(a, b) is not a local maximum and not a local minimum.

Example:

D = R2,then f(x, y) = 1− |x| − |y| then f global maximum at (x, y) = (0, 0)
1:D = R2 then f(x, y) = 1

3x
3 − x+ y2 = g(x) + h(y)
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Lecture 8:

maxima and minima continued:

f : D ⊂ R2 → R of classC2 and has critical point (a, b) ∈ D

d = det(Hessian matrix) =

∣∣∣∣fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

∣∣∣∣ = fxx(a, b) · fyy(a, b)− (fxy(a, b))2

Case 1: d > 0 and fxx(a, b) > 0 then f local minimum at (a, b)
Case 2: d > 0 and fxx(a, b) < 0 then f local maximum at (a, b)
Case 3: d < 0 then f has a saddle at (a, b)
Theorem 7: Let f : D ⊂ R2 → Rwhere (a, b) ∈ D then f(a, b) is aAbsolute maximum(minimum) if f(a, b) ≥
(≤)f(x, y) for all (x, y) ∈ D
Closed set: if a set contains its boundaries. the complement of this set is open.
bounded set: set that contains not all of its boundarys.
Theorem 8: extreme value theorem for two functions of two variables: if f continuous
on closed& compact setD ⊂ Rn thnef attains absolute maximum at f(x1, y1) and absolute mini-
mum f(x2, y2) for (x1, y1)&(x2, y2) ∈ D
Theorem 9: to find absolute maximum (minimum) on closed and bounded set:
(1) find f(a, b) where (a, b) critical point inD
(2) find extreme values on boundaries
(3) the largest (smallest) value of step 1 and step 2 is the absolute maximum (minimum) value.

Lagrange multipliers

14.8:
Theorem 1: WhenOf(x0, y0, z0) andOg(x0, y0, z0) whereOg(x0, y0, z0) 6= 0 there existsLagrange
multiplierλ s.t.Of(x0, y0, z0) = λOg(x0, y0, z0)
Proof:
t→ r(t) parameterization of a curve inS s.t. r(t) = a
Then (f ◦ r)(t) extremum at t0
Hence d

dtf(r(t0)) = Of(r(t0)) · r′(t0) = Of(a) · r′(t0) = 0
This holds for all curves inS at a ∈ S
Together with the tangent vectors span tangent plane ofS at a ∈ S
SoOf(a)⊥S@a and hence is parallel toOg(a)
Method lagrange multipliers:
Find maximum& minimum values f(x, y, z) to the constraint g(x, y, z) = k assuming extreme values
exists, andOg 6= 0 on g(x, y, z) = k
(1) find all values s.t.Of(x, y, z) = λOg(x, y, z) and g(x, y, z) = k
(a) fx(x, y, z) = λgx(x, y, z) and fy(x, y, z) = λgy(x, y, z) and fz(x, y, z) = λgz(x, y, z)
(2) evaluate f at the founded values of (x, y, z) the largest: maximum value of f smallest: minimum
value of f

Theorem 16:Lagrange multipliers two constrains:
Of(x0, y0, z0) = λOg(x0, y0, z0) + µOh(x0, y0, z0)
So then fx = λgx + µhx and fy = λgy + µhy and fz = λgz + µhz
Furthermore g(x, y, z) = k andh(x, y, z) = c
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Lecture 9:

Double integral:

Definition 1:Riemannsum:
n∑
i=1

f(x?i )∆x and Definition 2: Integral:
b∫
a

f(x)dx = lim
n→∞

f(x?i )∆x

Sample point (x?ij , y
?
ij) in eachRij

Definition 3: So then we have thatV =
m∑
i=1

n∑
j=1

f(x?ij , y
?
ij)∆A

Volume of the solidS that lies under f and above rectangleR

Definition 4:V = lim
(m,n)→∞

m∑
i=1

n∑
j=1

f(x?ijy
?
ij)∆A

Definition 5:Double integral of f over rectangleR is:∫ ∫
R

f(x, y)dA = lim
(m,n)→∞

m∑
i=1

n∑
j=1

f(x?ijy
?
ij)∆A

If this limit exists.
f is Integrable if the limit in definition 5 exists.
Double riemann sum: the double sum in definition 5.

Definition 6:
If we choose (x?ij , y

?
ij) = (xi, yi) then we get:∫ ∫

R

f(x, y)dA = lim
m,n→∞

m∑
i=1

n∑
i=1

f(xi, yi)∆A

So therefore, if f(x, y) ≥ 0 thenV volume lies above rectangleR and below surface z = f(x, y) isV =∫ ∫
R

f(x, y)dA

Midpoint rule:∫ ∫
R

f(X, y)dA =
m∑
i=1

n∑
i=1

f(xi, yi)∆Awherexi midpoint [xi−1, xi] and yi midpoint [yi−1, yi]

Iterated integarls:

Suppose f integrable function onR = [a, b]× [c, d]
Partial integration w.r.t. y: held the other variables fixed and integrate with respect ot y

We see thatA(x) =
d∫
c

f(x, y)dy

Definition 7:
b∫
a

A(x)dx =
b∫
a

[
d∫
c

f(x, y)dy]dx

Iterated integral:The integral on the right side.
Theorem 10: Fubini’s theorem: f continuous on rectangle:R = {(x, y)|a ≤ x ≤ b, c ≤ y ≤
d} then:∫ ∫
R

f(x, y)dA =
b∫
a

d∫
c

f(x, y)dydx =
d∫
c

b∫
a

f(x, y)dxdy

Theorem 11:∫ ∫
R

g(x)h(y)dA =
b∫
a

g(x)dx
d∫
c

h(y)dywhereR = [a, b]× [c, d]
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General double integrals

15.2:
To define

∫ ∫
D

fdAwhereD bounded,letR rectangle containingDExtend f toR by defining:

Definition 1: f ext(x, y) =

{
f(x, y) if (x, y) ∈ D
0 if (x, y) 6∈ D

Defintion 2: We define
∫ ∫
D

fdA to be
∫ ∫
R

f extdA

Elementary regions in R2

Type 1 2
Definition g1&g2 continuous, but need not h1&h2 continuous need not to be

to be defined by single formula defined by single formula
Region D D = {(x, y)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)} D = {(x, y)|c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}
integral

∫ ∫
D

f(x, y)dA =
∫ ∫
D

f(x, y)dA =

b∫
a

g2(x)∫
g1(x)

f(x, y)dydx
d∫
c

β(y)∫
α(y)

f(x, y)dxdy

Definition 3 Definition 4
Annulus:Region between two circles.

Properties double integrals:

Property 5:∫ ∫
D

[f(x, y) + g(x, y)]dA =
∫ ∫
D

f(x, y)dA+
∫ ∫
D

g(x, y)dA

Property 6:
for constant c we have

∫ ∫
D

cf(x, y)dA = c
∫ ∫
D

f(x, y)dA

Property 7:
If f(x, y) ≥ g(x, y) for all (x, y) ∈ D:∫ ∫
D

f(x, y)dA ≥
∫ ∫
D

g(x, y)dA

Property 8:
IfD = D1 ∪D2 such thatD1 andD2 does not overlap then:∫ ∫
D

f(x, y)dA =
∫ ∫
D1

f(x, y)dA+
∫ ∫
D2

f(x, y)dA

Property 9:∫ ∫
D

1dA = A(D)

Property 10:
ifm ≤ f(x, y) ≤M for all (x, y) ∈ D:
m ·A(D) ≤

∫ ∫
D

f(x, y)dA ≤M ·A(D)
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Lecture 10:

Rewrite a function to polar coordinates by:
r2 = x2y2 andx = r cos(θ) and y = r sin(θ)
Definition 2:
f continuous on polar rectangleR given by 0 ≤ a ≤ r ≤ b andα ≤ θ ≤ β where 0 ≤ β − α ≤ 2π∫ ∫
R

f(x, y)dA =
β∫
α

b∫
a

f(r cos(θ), r sin(θ))rdrdθ

Theorem 3:
If f continuous on polar regionD = {(r, θ)|α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)} then:∫ ∫
D

f(x, y)dA =
β∫
α

h2(θ)∫
h1(θ)

f(r cos(θ), r sin(θ))rdrdθ

Example:

1:
x2 + y2 = 4 so then f(x, y) = x2 + y∫ ∫
D

f(x, y)dA =

π
2∫
0

2∫
0

(r2 cos2(θ) + r sin(θ))rdrdθ

=

π
2∫
0

1
4r

4 cos2(θ) + 1
3r

2 sin(θ)|r=2
r=1dθ =

π
2∫
0

(4 cos2 θ + 8
3 sin θ)dθ = 2(cos θ sin θ + θ − 4

3 cos θ)|
π
2
0 = π + 8

3

Applications:

Whole paragraph 15.4 is about this:
(a) Density
(b) electric charge
(c) moment (of inertia)
(d) radius of gyration of a lamina
(e) Probability
(f) Joint density function
(g) Expected values (X-mean and Y-mean)

Surface area:

Paragraph 15.5: Surface area area of a surface Definition 1:A(S) = lim
m,n→∞

m∑
i=1

n∑
i=1

∆Tij

Definition 2 and 3: if z = f(x, y) where (x, y) ∈ D and fx&fy continuous:

A(s) =
∫ ∫
D

√
[fx(x, y)]2 + [fy(x, y)]2 + 1dA =

∫ ∫
D

√
1 + ( ∂z∂x )2 + ( ∂z∂y )2dA

Paragraph 15.6:

Triple integrals:

Definition 1: simples caseB = {(x, y, z)|a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s}

Definition 2:Triple Riemann sum:
l∑
i=1

m∑
j=1

n∑
k=1

(x?ijk, y
?
ijk, z

?
ijk)∆V

Definition 3:Triple integral is equal to:
∫ ∫
B

∫
f(x, y, z)dV = lim

l,m,n→∞

l∑
i=1

m∑
j=1

n∑
k=1

(x?ijk, y
?
ijk, z

?
ijk)∆V
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exists.
Fubini’s theorem for triple integrals, theorem 4:

If f continuous onB = [a, b] × [c, d] × [p, q] then
∫ ∫ ∫

B

fdV =
b∫
a

d∫
c

q∫
p

f(x, y, z)dzdydx = five other or-

ders

Definition 6:
∫ ∫ ∫

E

f(x, y, z)dV =
∫ ∫
D

[
u2(x,y)∫
u1(x,y)

f(x, y, z)dz]dA

Definition 7: If porjectionD ofE ontoxy− plane of type 1:∫ ∫ ∫
E

f(x, y, z)dV =
b∫
a

g2(x)∫
g1(x)

u2(x,y)∫
u1(x,y)

f(x, y, z)dzdydx

Definition 8: If projectionD ofE ontoxy− plane of type 2:∫ ∫ ∫
E

f(x, y, z)dV =
d∫
c

h2(y)∫
h1(y)

u2(x,y)∫
u1(x,y)

f(x, y, z)dzdxdy

The second part of this paragraph is about applications.

Example:

W is a graph like a icecream cone.
W =region above the cone z =

√
x2 + y2 and below the sphere z =

√
1− x2 − y2

∫ ∫ ∫
W

f(x, y, z)dV =
∫ ∫
D

√
1−x2−y2∫
√
x2+y2

dzdA

Boundary of shadowD by
√
x2 + y2 =

√
1− x2 − y2 ⇔ x2+y2 = 1−x2−y2 so D is disk of radius 1√

2
1√
2∫

− 1√
2

√
1
2−x2∫

−
√

1
2−x2

√
1−x2−y2∫
√
x2+y2

f(x, y, z)dzdydx

Other types of coordinates:

Name x = y = z = r&ρ = extra
Cylindrical r cos(θ) r sin(θ) z tan(θ) = y

x 15.7:Definition 1 from polar

system z
√
x2 + y2 15.7:Definition 2 From rectangular

Spherical ρ sinφ cos θ ρ sinφ sin θ ρ cosφ
√
x2 + y2 + z2 15.8:Definition 1,2

Corresponding integrals:

15.7:Definition 4:∫ ∫ ∫
E

f(X, y, z)dV =
β∫
α

h2(θ)∫
h1(θ)

u2(r cos(θ),r sin(θ))∫
u1(r cos(θ),r sin(θ))

f(r cos θ, r sin θ, z)rdzdrdθ

WhereD = {(rθ)|α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)} andE = {(x, y, z)|(x, y) ∈ D,u1(x, y) ≤ z ≤
u2(x, y)}

15.8:Definition 3
∫ ∫ ∫

E

f(x, y, z)dV =
d∫
c

β∫
α

b∫
a

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφdρdθdφ

WhereE = {(ρ, θ, φ)|a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ φ ≤ d}
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Lecture 11:

Change of variables: double integrals:

paragraph 15.9:
Definition 1,2:
b∫
a

f(x)dx =
d∫
c

f(g(u))g′(u)du =
d∫
c

f(x(u)) dxduduwherex = g(u) and a = g(c) and b = g(d)

Definition 7:Jacobian of the transformationT given byx = g(u, v) and y = h(u, v) is:

∂(x,y)
∂(uv) =

∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ = ∂x
∂u

∂y
∂v −

∂x
∂v

∂y
∂u

Definition 9: and after a lot of computations: If we have a mapT : D? → D (so from one map to
another map) andT bijective andC1 Then f : D → R integrable then substitution rule:∫ ∫
D

f(x, y)dxdy =
∫ ∫
D?

f(x(u, v), y(u, v))
∣∣∣ δ(x,y)
δ(u,v)

∣∣∣dudv
Example

T : (rθ)→ (x(r, θ), y(r, θ)) = (r cos(θ), r sin(θ))

Then δ(x,y)
δ(u,v) = r

So
∫ ∫
D

f(x, y)dxdy =
∫ ∫
D?

f(r cos(θ), r sin(θ))rdrdθ

Change of variables: triple integrals:

When we haveT one-to-one transformation maps regionS inuvw space onto regionR inxyz-space by:
x = g(u, v, w) and y = h(u, v, w) and z = k(u, v, w) then:

Jacobian: ∂(x,y,z)
∂(u,v,w) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣ and Definition 13:

∫ ∫ ∫
W

f(x, y, z)dxdydz =
∫ ∫ ∫

S

f(x(u, v, w), y(u, v, w), z(u, v, w))
∣∣∣ ∂(x,y,z)
∂(u,v,w)

∣∣∣dudvdw
Example:

x = ρ sin(φ) cos(θ) and y = ρ sin(φ) sin(θ) and z = ρ cos(φ)
δ(x,y,z)
δ(ρ,φ,θ) = ρ2 sin(φ)

So
∫ ∫ ∫

W

f(x, y, z)dxdydz =
∫ ∫ ∫

W?

fρ2 sinφdρdθdφ

Vector calculus:

16.1:
Definition 1:Vector fields:D ⊂ Rn andF : D 7→ Rn then this functionF is called a vector field.
Definition 2:E ⊂ R3 then vector field onR3 is function F that assigns each (x, y, z) ∈ E in three-
dimensional vector F(x, y, z)
After this, there are a lot of examples.
Gradient vector field/conservation:F : D ⊂ Rn → Rn if there exists f : D → R s.t.F = Of
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SoOf(x, y) = fx(x, y)i + fy(x, y)j inR2

In this case f is calledpotential function forF

Line integrals:

16.2:
Definition 1: We start withC given byx = x(t), y = y(t) where a ≤ t ≤ b
Smooth curve:
C smooth curve inRn with parameter r : [a, b]→ Rn and t 7→ r(t)
With r′(t) 6= 0 for all t ∈ [a, b]

Then length ofC given byL =
b∫
a

‖r′(t)‖dt =
L∫
0

ds

WhereS is called the arclength, where ds
dt = ‖r′(t)‖

So s(t) =
t∫
a

‖r′(τ)‖dτ

Definition 2: if f smooth curveC then the line integral of f alongC is
∫
C

f(x, y)ds = lim
n→∞

f(x?i , y
?
i )∆si if

the limit exist. (w.r.t arclength)

Definition 3:
∫
c

f(x, y)ds =
b∫
a

f(x(t), y(t))
√

(dxdt )2 + (dydt )2dt

C is called piecewise smooth iff C is an union of finitely many smooth curvesCi where i = 1, . . . , n s.t.
the initial point ofCi equals the endpoint ofCi−1 where i = 2, . . . , n

Then
∫
C

fds :=
n∑
i=1

∫
Ci

fds

Definition 7a line integral w.r.tx
∫
c

f(x, y)dx =
b∫
a

f(x(t), y(t))x′(t)dt

Definition 7b line integral w.r.t y
∫
c

f(x, y)dy =
b∫
a

f(x(t), y(t))y′(t)dt

Definition 8: When we have a line that starts at r0 and r1 then we have r(t) = (1−t)r0+tr1 where 0 ≤
t ≤ 1

Definition 9:Line integrals in space:
∫
c

f(x, y, z)ds =
b∫
a

f(x(t), y(t), z(t))
√

(dxdt )2 + (dydt )2 + (dzdt )
2dt
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Lecture 12:

Line integrals

Definition 13: F continuous vector field, defined smooth curveC given by r(t), a ≤ t ≤ b. ThenLine

integral of F along C:
b∫
a

F (r(t)) · r′(t)dt =
L∫
0

F · Tds

When F = P i +Qj +Rk we have:∫
C

F · dr =
∫
C

Pdx+Qdy +Rdz

Example:

F force field, then the line integral ofF along the curveC is the work required to move a particle
alongC

r : [0, 1]→ R3—,where r(t) = ti + 3t2j + 2t2k
F (x, y, z) = x3i + y2j + zk∫
C

Fdr =
1∫
0

F (r(t)) · r′(t)dt =
1∫
0

(t3i + (3t2)2j + 2t3k) · (i + 6tj + 6t2k)dt =
1∫
0

(t3 + 54t5 + 12t4)dt =

1
4 + 11 = 11 1

4

Orientation of a curve:

16.3:

Theorem 1:
b∫
a

F ′(x)dx = F (b)− F (a) (part 2 of fundamental theorem of caluclus)

Theorem 2:C smooth curve given by r(t) where a ≤ t ≤ b then:∫
C

Of · dr = f(r(b))− f(r(a))

Theorem 3: F · dr independent of path inD iff
∫
C

F · dr = 0 for every closed path inC

Theorem 4: Fundamental theorem of line integrals:
Suppose F continuous open connectedD. If

∫
C

F · dr independent of path inD thenF—,conservative

vector field onD that is, there exists a function f s.t.Of = F
Proof:

Let f(x, y) =
(x,y)∫
(a,b)

after few computation we see that ∂
∂xf(x, y) = 0 + ∂

∂xF · dr

If F = P i +Qj we see that
∫
C2

F · dr =
∫
C2

Pdx+Qdy then F = P i +Qj = ∂f
∂x i + ∂f

∂y j = Of

(for full proof see page 1147)
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Lecture 13:

Theorem 5:
F continuous vector field. F independent of path⇔

∮
F · dr = 0 for all closed curvesC∮

stands for the integral on a closed curve.
Proof:
⇒
LetC be closed curve. Then we have

∮
C

F · dr =
∫
c1

F · dr +
∫
c2

F · dr =
∫
−C1

F · dr +
∫
C2

F · dr = 0

As−C1 andC2 have the same initial and final points andF is independent of path.
⇐
LetC be the closed curve which is union ofC1 andC2

0 =
∫
C

F · dr =
∫
C1

F · dr +
∫
−C2

F · dr =
∫
C1

F · dr−
∫
C2

F · dr

So
∫
C1

F · dr =
∫
C2

F · dr which is exactly what we wanted to show.

Definition:
A domain is called simply connected if it is connected and all closed curves inD can be contracted
to a point.
Theorem 6:
LetF = P i +Qj be a factor field on simply connected domainD ∈ R2 withP&QbeingC1

Then ∂P
∂y = ∂Q

∂x ⇔ F is conservative.
Paragraph 16.4:

Green’s theorem:

LetD bounded domain inR2 with boundaryNotation: ∂D consist of finitely many simple chose piece-
wiseC1 curves
Orient ∂D s thatD is on the left as one traverses ∂D

LetF = P i +Qj be aC1 Vector field onD
Then

∮
∂D

Pdx+Qdy =
∫ ∫
D

(∂Q∂x −
∂P
∂y )dA

Relates line integrals to double integrals.
LHS might help to compute RHS or vica versa.
Proof:
There is a really long proof in the book
Theorem 5: The Green’s Theorem gives the following formulas for the area ofD:
A =

∮
C

xdy = −
∮
C

ydx = 1
2

∮
C

xdy − ydx
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Curl and divergence

Paragraph 16.5:
Definition 1:Curl: curlF = (∂R∂y −

∂Q
partialz )i + (∂P∂z −

∂R
∂x )j) + (∂Q∂x −

∂P
∂y )k

Remember:O = i ∂∂x + j ∂∂y + k ∂
∂z

Definition 2: curlF = O× F
Theorem 3: if f function 3 variables, continuous second order partial derivatives then curl(Of) = 0
Proof:

curl(Of) = O × (Of) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣ = ( ∂2f
∂y∂z −

∂2f
∂z∂y )i + ( ∂2f

∂z∂x −
∂2f
∂x∂z )j + ( ∂2f

∂x∂y −
∂2f
∂y∂x )k =

0i + 0j + 0k = 0
Definition 9: divF = ∂P

∂x + ∂Q
∂y + ∂R

∂z where divF stands for the diverengence of F
Definition 10: divF = O · F
Theorem 11: if F = P i + Qj + Rk vector field onR3 andP,Q,R continuous second order partial
derivatives, then div curlF = 0
Proof:
use div curl F = O · (O× F)

Laplace operator:O2 = O · O name comes from relation toLaplace’s equation:O2f = ∂2f
∂x2 +

∂2f
∂y2 + ∂2f

∂z2 = 0

Definition 12: Rewrite Green’s theorem in vector form:
∮
C

F · dr =
∮
C

F ·Tds =
∫ ∫
D

(Curl F) · kdA

Definition 13: or:
∮
C

F · nds =
∫ ∫
D

div F(x, y)dAwhere n(t) = y′(t)
|r′(t)| i−

x′(t)
|r′(t)| j

term 2A 2020-2021 Page 29



Calculus 2, University of Groningen H.M. Goossens

Lecture 14:

16.6:
Let r vector function of two parameters
definition 1: so r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k
Definition 2:Parameteric equations:x = x(u, v), y = y(u, v) and z = z(u, v)
D is the region in theuv−plane where r(u, v) is defined.
Parameteric surface: the set of all points (x, y, z) inR3 that satisfies the second definition and
where (u, v) varies throughoutD
Grid curve: a curve of r(u, v) where we have on of the parameters as a constant.

Surface of revolution: surface that exists by rotating the curveu = f(x) where a ≤ x ≤ b about
thex− axis, where f(x) ≥ 0
If (x, y, z) a point on this surfaceS then:
Definition 3:x = x ,y = f(x) cos(θ) and z = f(x) sin(θ) where θ the angle of rotation.
So domain is equal to:
a ≤ x ≤ b and 0 ≤ θ ≤ 2π

Tangent plane:

The partial derivatives of r(u, v):
Definition 4: rv = ∂x

∂v (u0, v0)i + ∂y
∂v (u0, v0)j + ∂z

∂v (u0, v0)k

Definition 5: ru = ∂x
∂u (u0, v0)i + ∂y

∂u (u0, v0)j + ∂z
∂u (u0, v0)k

if ru × rv
neq0 for all values, then the surfaceS isSmooth
Tangent plane: contains ru&rv and the vector ru&rv are normal vector to the tangent plane.

Definition 6:S smooth curve, given by r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k where (u, v) ∈ D
S covered just once (u, v) through domainD thenSurface area:
A(S) =

∫ ∫
D

|ru × rv|dAwhere ru&rv like above.

Special case:

x = x and y = y and z = f(x, y) then rx = i + (∂f∂x )k and ry = j + (∂f∂y )k then

Definition 7: rx × ry =

∣∣∣∣∣∣
i j k

1 0 ∂f
∂x

0 1 ∂f
∂y

∣∣∣∣∣∣ = −∂f∂x i− ∂f
∂y j + k

So Definition 8: |rx × ry| =
√

(∂f∂x )2 + (∂f∂y )2 + 1 =
√

1 + ( ∂z∂x )2 + ( ∂z∂y )2

Definition 9: so the surface area formula will become:A(S) =
∫ ∫
D

√
1 + ( ∂z∂x )2 + ( ∂z∂y )2dA

Surface integrals:

16.7:
Definition 1:Surface integral of f over the surface S by the riemann sum:

∫ ∫
)Sf(x, y, z)dS =

lim
m,n→∞

f(P ?ij)∆Sij

Definition 2:
∫
S

∫
f(x, y, z)dS =

∫ ∫
D

f(r(u, v))|ru × rv|dA
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Definition 4:
∫
S

∫
f(x, y, z)dS =

∫ ∫
D

f(x, y, g(x, y))
√

( ∂z∂x )2 + ( ∂z∂y )2 + 1dA

Oriented surface:

Two unit normal vectors n1 and n2 where n2 = −n1

Oriented surface: if it is possibl eot choose n at every (x, y, z) s.t. ,n varies continuously overS.
When we choose such an n ,it givesS orientation.

Definition 5: for a surface z = g(x, y) we can say that: n =
− ∂g∂x i−

∂g
∂ j+k√

1+( ∂g∂x )2+( ∂g∂y )2

k > 0 so upward orientation. IfS smooth then n = ru×rv
|ru×rv|

Flux:

Let n normal vector ,ρ(x, y, z) destiny and v(x, y, z) velocity field then the rate of flow per unit is
given by ρv
If we divideS into small pachesSij we obtain that the mass of fluid per unit time crossingSij in the
direction of n is equal to: (ρv · n)A(Sij)
So therefore we know after some steps that:
Definition 6:

∫ ∫
S

ρv · ndS =
∫ ∫
S

ρ(x, y, z)v(x, y, z) · n(x, y, z)dS

If we write F = ρv we obtain
∫ ∫
S

F · ndS

Definition 8: F cont.vector field defined onS with unit normal vector n then the surface integral
ofFover S is equal to:∫ ∫
S

F · dS =
∫ ∫
S

F · ndS This integral is also calledFlux of F acrossS

Definition 9:
∫ ∫
S

F · dS =
∫
D

∫
F · (ru × rv)dA

This assumes that orientation induced by ru × rv. Opposite orientation?Multiply with−1

If we use z = g(x, y) we see that:
Definition 9: F · (rx × ry) = (P 〉+Qj +Rk) · (− ∂g

∂x i− ∂g
∂y i + k)

So then definition 10:
∫ ∫
S

F · dS =
∫ ∫
D

(−P ∂g
∂x −Q

∂g
∂y +R)dA

upward orientation ofS. otherwise multiply with−1

Application:

1: E is elictric field, then
∫ ∫
S

E · dS isElectrix flux of E through S.

Definition 10:Gauss’s Law:Q = ε0

∫ ∫
S

E · dS

Q is the net charge enclosed by a closedS, ε0 is a constant(permittivity of free space)

2:u(x, y, z) temperature body at (x, y, z) then heat flow: F = −KOuK is constant called conduc-
tivity. Rate of heat flow across the surfaceS in the body:

∫ ∫
S

F · dS = −K
∫ ∫
S

Ou · dS
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Lecture 15:

16.8:
Positive oriientation of the boundary curveC if you ”walk” in positive direction aroundC with
head pointing direction n then surface will be on your left.
Stokes’ theorem:S oriented piecewiese-smooth surface bounded by simple,closed,piecewise-smoothC with
positive orientation.
F vector field, components has continuous partial derivatives on open regionR3 andS ∈ R3 then:∫
C

F · dr =
∫ ∫
S

curlF · dS

Definition 1: int
∫
S

curlF · dS =
∫
∂S

F · dR

Where ∂S—,is the positvely oriented boundary curve of the oriented surfaceS

Definition 3: if S1 andS2 oriented surface,same oriented boundary curveC, both satisfy Stoke’s
theorem then:∫ ∫
S1

curlF · dS =
∫
C

F · dr =
∫ ∫
S2

curlF · dS

v: the velocity field in fluid flow.
The line integral

∫
C

v · dr > 0 then positive circulation (and otherwise negative, obviously).

We see htat
∫
Ca

v·dr =
∫ ∫
Sa

curlv·dS =
∫ ∫
Sa

curlv·ndS ≈
∫
Sa

curlv(P0)·n(P0)dS = curlv(P0)·n(P0)πa2

We see thatP0(x0, y0, z0) a point in the fluid, andSa small disk with radius a and centered atP0

whne a→ 0:
Definition 4: curlv(P0) · n(P0) = lim

a→0

1
πa2

∫
Ca

v · dr

The divergence theorem:

16.9:
Definition 1:

∫ ∫
S

F · ndS =
∫ ∫
E

∫
divF(x, y, z)dV

Divergence theorem:E simple solid region andS boundary surfaceE given wiht positive outward
orientation.F vector field, with component functions continuous partial derivatives on open region
containingE
Then:

∫ ∫
S

F · dS =
∫ ∫
E

∫
divFdV

Assume a regionE closed by the suraceS1 andS2 whereS1 lies insideS2

n1&n2 outward normalsS1&S2 then boundary surface ofE isS = S1∪S2 and n = −n1 onS1 and n =
n2 onS2

Then we receive: Definition 7:∫ ∫
E

∫
divFdV =

∫ ∫
S

F·dS =
∫ ∫
S

F·ndS =
∫ ∫
S1

F·(−n1)dS+
∫ ∫
S2

F·n2dS = −
∫
S1

∫
F·dS+

∫
S2

∫
F·dS
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Application:

1:
We know that E(x) = εQ

|x|3 x whereQ electric charge at origin,x = 〈x, y, z〉 and E electric field.

Then we see that the electirc flux through any closedS ecloses the origin is
∫ ∫
S

E · dS = 4πεQ

Definition 8:
∫ ∫
E

∫
divEdV = −

∫ ∫
S1

E · dS +
∫ ∫
S

E · dS

(like definition 3 of 16.8)
And because we see that divE = 0 we now that

∫ ∫
S

E · dS =
∫ ∫
S−1

E · dS

2:
When we have F = ρv so the rate of flow per unit area ,P0(x0,0 , z0) a point in the fluid, andB0 ball
with centerP0 and radius a then divF(P ) ≈ div]F(P0) for all points inP inBa since divF continuous.

Flux over the boundary sphereSa:∫ ∫
Sa

F · dS =
∫ ∫
Ba

∫
divFdV ≈

∫ ∫
Ba

∫
divF(P0)dV = divF(P0)V (Ba)

When a→ 0 suggest Definition 8: divF(P0) = lim
a→0

1
V (Ba)

∫ ∫
Sa

F · dS

divF(P0) net rate of outward flux per unit volume atP0 (reason name divergence).
If divF(P ) > 0 : source if divF(P ) < 0 : sink
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