Lecture 1

Definitions:

COORDINATE AXIS: x, y, z – axis, perpendicular to eachother, through O Coordinate planes: 3 options: (1) xy−plane: (2) xz−plane: (3) yz−plane: contains $x-$ and $y-$ axis. :contains $x-$ and $z-$ axis. contains $y-$ and $z-$ axis. OCTANTS: the eight parts in space, divided by the coordinate planes. FIRST OCTANT: determined by the positive axes. Point P has the ordered triple (a, b, c) where COORDINATES a, b, c: $a =x$ -coordinate, $b =y$ -coordinate $\&c = z$ coordinate. PROJECTION OF P: when projection on $xz-$ plane, y– coordinate equals 0, works same way for $yz-$ and $xy-$ plane. three-dimensional rectangular coordinate system:system where one-to-one correpsondence between a point and ordered triplets $(a, b, c) \in \mathbb{R}^3$ SURFACE IN \mathbb{R}^3 : in 3d analytic geometry, an equation in x, y, z DISPLACEMENT VECTOR V denoted by v or \vec{v} the vector represents the movement along a line segment.

INITIAL POINT: tail of vector and TERMINAL POINT: the tip. Write $\mathbf{v} = \vec{AB}$ $u = v$ EQUIVALENT OR EQUAL: same length, same direction, same possition not necessory. $\text{ZERO VECTOR} 0$ length 0 $\vec{AC} = \vec{AB} + \vec{AC}$

New formula's

Distance formula in three dimensions: distance $|P_1P_2|$ between $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is: $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ **Equation of a sphere:** Equation sphere with center $C(h, k, l)$ and radius r: $(x-h)^2 + (y-k)^2(z-l)^2 = r^2$ When center= O then: $x^2 + y^2 + z^2 = r^2$

Algebra vectors (1):

Definition of vector addition: u&v vectors possitioned s.t. initial point $v =$ terminal point v then u + v vector initial point u to terminal point v

Parallelogram Law: $u + v = v + u$

Scaler: a real number with which we multiply something. In this case a vector.

Definition scaler multiplication: c scaler **v** vector then: (1) scaler multiple cv vector whose length $|c|$ times length of v

(a) Same direction as \mathbf{v} if $c > 0$ (b) opposite if $c < 0$ (c) $c = 0$ or $\mathbf{v} = 0$ then $c\mathbf{v} = 0$ PARALLEL: two vectors if scaler multiples one another. NEGATIVE of v same length as v opposite direction: $-\mathbf{v} = (-1)\mathbf{v}$ DIFFERENCE $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$

Components:

terminal a @origin, then coordinates called COMPONENTS: \mathbb{R}^2 2 \mathbb{R}^3 $\langle a_1, a_2 \rangle$ $\langle a_1, a_2, a_3 \rangle$ REPRESENTATIONS: gives an image of a vector.

vector representation: $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ then $\overrightarrow{AB} = \mathbf{a} = \langle x - 2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$ POSITION VECTOR OF POINT $P: \overrightarrow{OP}$

Length of magnitude: v denoted by $|v|$ or $||v||$ the length of any representations:

 \mathbb{R}^2 $\left\{\begin{array}{ll} \mathbf{a}=\langle a_1, a_2\rangle \ \mathbf{a}=\langle a_1, a_2, a_3\rangle \end{array}\right.\ \left|\mathbf{a}\right|=\sqrt{a_1^2+a_2^2+a_3^2}$ \mathbb{R}^3

Algebra vectors (2):

 $\mathbf{a} = \langle a_1, a_2 \rangle \& \mathbf{b} = \langle b_1, b_2 \rangle$ then: $(-)$ **a** + **b** = $\langle a_1 + b_1, a_2 + b_2 \rangle$ $(-)$ **a** − **b** = $\langle a_1 - b_1, a_2 - b_2 \rangle$ $\langle \text{-} \rangle$ ca = $\langle ca_1, ca_2 \rangle$ $\mathbf{a} = \langle a_1, a_2, a_3 \rangle \& \mathbf{b} = \langle b_1, b_2, b - 3 \rangle$ $(-)$ **a** + **b** = $\langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$ $(-)$ **a** − **b** = $\langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$ $\langle \text{-} \rangle$ ca = $\langle ca_1, ca_2, ca_3 \rangle$

Properties of vectors: a, b, c vectors in V_n and α , β scalers:

 $a + b = b + a$ $a + (b + c) = (a + b) + c$ $a + 0 = a$ $a + (-a) = 0$ $\alpha(\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b}$ $(\alpha + \beta) \mathbf{a} = \alpha \mathbf{a} + \beta \mathbf{a}$ $(\alpha \beta)$ a = $\alpha(\beta a)$ 1a = a

Definitions:

STANDARD BASIS VECTORS: i, j, k where $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$ and $\mathbf{k} = \langle 0, 0, 1 \rangle$ If $\mathbf{a} = \langle a_1, a_2 \rangle$ then $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$ If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ then $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ UNIT VECTOR: vector length 1. For example $\mathbf{i}, \mathbf{j}\&\mathbf{k}$ if $\mathbf{a} \neq \mathbf{0}$ then unit vector same direction as \mathbf{a} is: $\mathbf{u} = \frac{\mathbf{a}}{|\mathbf{a}|}$

applications:

RESULTANT FORCE: the sum of the forces experienced by the object. Example: 100-lb weight. Find $T_1 \& T_2$ and the magnitudes.

$$
\begin{array}{c|c}\n 50^{\circ} & T_1 \\
 \hline\n 50^{\circ} & 32^{\circ} \\
 \hline\n & w\n\end{array}
$$

From this figure, we see that: $\mathbf{T}_1 = -|\mathbf{T}_1|\cos(50^\circ)\mathbf{i} + |\mathbf{T}_1|\sin(50^\circ)\mathbf{j}$ $T_2 = -|T_2| \cos(32^\circ) i + |T_2| \sin(32^\circ) j$ $\mathbf{T}_1 + \mathbf{T}_2 = \mathbf{w} = -100\mathbf{j}$ After some algebra we find that $|\mathbf{T}_1| \frac{100}{\sin 50^\circ + \tan 32^\circ \cos 50^\circ}$ and $|\mathbf{T}_2| = \frac{|\mathbf{T}_1| \cos 50^{\deg}}{\cos 32^{\deg}}$
And $\mathbf{T}_1 \approx -55.06\mathbf{i} + 65.60\mathbf{j} \& \mathbf{T}_2 \approx 55.05\mathbf{i} + 34.40\mathbf{j}$

Dot product:

DEFINITION: $\mathbf{a} = \langle a_1, a_2, a_3 \rangle \& \mathbf{b} = \langle b_1, b_2, b_3 \rangle$ then DOT PRODUCT $(-)$ **a** \cdot **b** = $a_1b_1 + a_2b_2 + a_3b_3$ $\langle \cdot | \langle a_1, a_2 \rangle \cdot \langle b_1, b_2 \rangle = a_1b_1 + a_2b_1$ SCALER PRODUCT (OR INNER PRODUCT) other name dot product because $\mathbf{a} \cdot \mathbf{b} \in \mathbb{R}$ **Properties dot product: a.b&c** $\in V_3$ and α scaler then: 2

(1)
$$
\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2
$$

(2) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
(3) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
(4) $(\alpha \mathbf{a}) \cdot \mathbf{b} = \alpha (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\alpha \mathbf{b})$
(5) $\mathbf{0} \cdot \mathbf{a} = 0$

ANGLE θ between the vectors $\partial \&\mathbf{b}$ starts at the origin where $0 \leq \theta \leq \pi$, if a $\&\mathbf{b}$ parallel then $\theta =$ $0 \text{ or } \theta = \pi$

Theorem: θ angle between vectors $a \& b$ then $a \cdot b = |a||b| \cos(\theta)$ PROOF:

$$
\begin{array}{c}\n\stackrel{B}{\longrightarrow}\n\stack
$$

 $|AB|^2 = |OA|^2 + |OB|^2 - 2|OA||OB|\cos(\theta)$ Because $|OA| = |\mathbf{a}|, |OB| = |\mathbf{b}|$ and $|AB| = |\mathbf{a} - \mathbf{b}|$ $\Rightarrow |\mathbf{a} - \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos(\theta)$ using the given properties, we can conclude the theorem. Corollary: $\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ PERPENDICALOR OR ORTHOGONAL: if angle between the vectors is $\theta - \frac{\pi}{2}$ so when $\mathbf{a} \cdot \mathbf{b} = 0$

Direction angles and direction cosines:

DIRECTION ANGLES: α, β, γ in above figure. (angle that a makes with the positive $x-, y-, z-\text{axes}$.) DIRECTION COSINES: the cosine of the direction angles:

$$
\begin{array}{l}\n(-)\cos(\alpha) = \frac{\mathbf{a} \cdot \mathbf{i}}{|\mathbf{a}||\mathbf{i}|} = \frac{a_1}{|\mathbf{a}|} \\
(-)\cos\beta = \frac{a_2}{|\mathbf{a}|} \\
(-)\cos\gamma = \frac{a_3}{|\mathbf{a}|}\n\end{array}
$$

 \mathcal{B} u squaring we see that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ so $\mathbf{a} = \langle |\mathbf{a}| \cos \alpha, |\mathbf{a}| \cos \beta, |\mathbf{a}| \cos \gamma \rangle = |\mathbf{a}| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$ so $\frac{1}{|\mathbf{a}|}\mathbf{a} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$

Projections:

SCALER PROJECTION OF VECTOR B ONTO VECTOR A: $\text{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$
Vector projection of vector b onto vector a: $\text{comp}_{\mathbf{a}} \mathbf{b} = (\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}$ $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$

Applications:

$$
P\frac{\frac{R}{\sqrt{R}}}{\frac{1}{R}}
$$

CONCSTANT FORCE VECTOR: F Displacement vector: D WORK: product of component of hte force along **D** and the distance moved. $\mathbf{W} = (|\mathbf{F}| \cos(\theta) | \mathbf{D} | = |\mathbf{F}||\mathbf{D}| \cos(\theta) = \mathbf{F} \cdot \mathbf{D}$

Cross product:

CROSS PRODUCT: $\mathbf{a} = \langle a_1, a_2, a_3 \rangle \& \mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then $\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$ Only when $a\&b$ three dimensional vectors. DETERMINANT ORDER 2: a b c d $\Big| = ad - bc$ Determinant of order 3: $a_1 \quad a_2 \quad a_3$ b_1 b_2 b_3 c_1 c_2 c_3 $= a_1$ b_2 b_3 c_2 c_3 $\Big|-a_2\Big|$ b_1 b_3 c_1 c_3 $\begin{array}{c} \hline \end{array}$ $+ a_3$ b_1 b_2 c_1 c_2 $\begin{array}{c} \hline \end{array}$ So if $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ then we can say that: $\mathbf{a} \times \mathbf{b} =$ $a_2 \quad a_3$ b_2 b_3 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ \mathbf{i} – $\Big|$ $a_1 \quad a_3$ b_1 b_3 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $j + \bigg|$ $a_1 \quad a_2$ b_1 b_2 ${\bf k} =$ $\begin{array}{c}\n\hline\n\end{array}$ i j k $a_1 \quad a_2 \quad a_3$ b_1 b_2 b_3 $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \ b_1 & b_2 \end{vmatrix} \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{vmatrix}$
Orthogonal: The vector $\mathbf{a} \times \mathbf{b}$ is orthogon PROOF: Just 1 part: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} =$ $a_2 \quad a_3$ b_2 b_3 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\cdot a_1$ $a_1 \quad a_3$ b_1 b_3 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\cdot a_2 +$ $a_1 \quad a_2$ b_1 b_2 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $-a_3 = a_1(a_2b_3 - a_3b_2) - a_2(a_1b_3 - a_3b_1) + a_2(a_1b_2 - a_3b_2)$ a_2b_1) = 0 so orthogonal. angle between vectors and cross product: $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin(\theta)$ Proof: $|\mathbf{a} \times \mathbf{b}|^2 = (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2 = (a_1^2 + a_2^2 + a_3^2) + (b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + b_2^2 + b_3^2)$ $a_2b_2 + a_3b_3 + 2$ $= |{\bf a}|^2 |{\bf b}|^2 - ({\bf a} \cdot {\bf b})^2 = |{\bf a}|^2 |{\bf b}|^2 - |{\bf a}|^2 |{\bf b}|^2 \cos^2 \theta$ $= |{\bf a}|^2 |{\bf b}|^2 (1 - \cos^2(\theta))$ $|\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2(\theta)$ Take the square root of both sides and you see the result like in the theorem. PARALLEL: $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ LENGTH CROSS PRODUCT $\mathbf{a} \times \mathbf{b}$ equal to the area determined by $\mathbf{a} \& \mathbf{b}$

Algebra cross products:

For the standard basis vectors: $i \times j = k$ $j \times k = i$ $k \times i = j$ $i \times i = -k$ $k \times i = -i$ $i \times k = -i$

For $\mathbf{a}, \mathbf{b}, \mathbf{c}$ vectors and scaler α :

(1) $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ (2) $(\alpha \mathbf{a}) \times \mathbf{b} = \alpha (\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (\alpha \mathbf{b})$ (3) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ (4) $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$ (5) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ (6) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

Triple product:

TRIPLE PRODUCT: $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) =$ $a_1 \quad a_2 \quad a_3$ b_1 b_2 b_3 c_1 c_2 c_3 VOLUME PARALLELEPIPED: determined by $\mathbf{a}, \mathbf{b}, \mathbf{c}: V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}|)$

Lines:

TRIANGLE LAW FOR VECTOR ADDITION: $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}$ Since a &v parallel, exists scaler t s.t. $\mathbf{a} = t\mathbf{v}$ so: $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ Where this last equation is called VECTOR EQUATION OF L PARAMETER: t gives position vector r **r** can also be written as $\mathbf{r} = \langle x, y, z \rangle$ When $t\mathbf{v} = \langle ta, tb, tc \rangle$ and $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$ then: $\langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle$ PARAMETIC EQUATIONS: $(-) x = x_0 + at$ $(-) y = y_0 + bt$ $(-) z = z_0 + ct$ where $t \in \mathbb{R}$ and L through $P(x_0, y_0, z_0)$ and parallel to $\langle a, b, c \rangle$ Each value of t gives a point on L a, b, c are called direction numbers of L SUMMETRIC EQUATIONS: $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$
LINE SEGEMENT from \mathbf{r}_0 to \mathbf{r}_1 given by: $\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1$ where $0 \le t \le 1$ Skew lines: lines that doe no intersect.

Planes:

NORMAL VECTOR **n** orthogonal to the plane. Let $P(x, y, z)$ arbitrary plane and \mathbf{r}_0 , r position vectors of P_0 and P then $\mathbf{r} - \mathbf{r}_0 = \overrightarrow{P_0 P}$ We see then that $n \cdot (\mathbf{r} - \mathbf{r}_0) = 0 \Leftrightarrow n \cdot \mathbf{r} = n \cdot \mathbf{r}_0$ These equations are calleed the vector equation of the plane. SCALER EQUATION OF THE PLANE trough $P_0(x_0, y_0, z_0)$ with $\mathbf{n} = \langle a, b, c \rangle$ is: $a(x - x_0) + b(y - y_0) +$ $c(z - z_0) = 0$ Then we can write this plane to: $ax + by + cz + d = 0$ Where LINEAR EQUATION IN $x, y, z: d = -(ax_0 + by_0 + cz_0)$

DISTANCE D FROM THE POINT $P_1(x_1, y_1, z_1)$ to the plaine $ax+by+cz+d=0$: $D = \frac{|ax_1+by_1+cz_1+d|}{\sqrt{a^2+b^2+c^2}}$

Lecture 2

3 dimensional planes:

TRACES: curves intersection surface with planes ⊥ coordinate plane.RULLINGS: lines in a surface QUADRIC SURFACE: second degree equations in 3 variables x, y, z and with constants: A, \ldots, J General form: $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$ Standard form 1: $Ax^{2} + By^{2} + Cz^{2} + J = 0$ Standard form 2: $Ax^{2} + By^{2} + Cz + j = 0$

Vector functions:

VECTOR FUNCTIONS: maps \mathbb{R} to \mathbb{R}^n

COMPONENT FUNCTIONS: $I \subset \mathbb{R}$ and $I \to \mathbb{R}^n$ and $t \to \langle r_1(t), \ldots, r_n(t) \rangle$ Example: $n = 3$ then $r(t) = \langle g(t), h(t), k(t) \rangle$ Definition 1: If $\mathbf{r}(t) = \langle f(t0 \lt g(t), H(t)) \rangle$ then $\lim_{t \to a} \mathbf{r}(t) = \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle$ Provides, limits of component functions exists.

PROOF:

recall $f(t) = f_1(t), g(t) = f_2(t)$ and $h(t) = f_3(t)$ 0 < $|t - a|$ < ∆ ⇒ $\|\mathbf{r}(t) - L\|$ < ε $\exists \delta_i > 0 \text{ s.t. } 0 < |t - a| < \delta_i \Rightarrow |f_i(t) - L_i| < \frac{\varepsilon}{\sqrt{3}} \text{ for } i = 1, 2, 3$

Set $\delta = \min\{\delta_i\}$ so then $\|\mathbf{r}(t) - L\|$ = s $\sum_{ }^{3}$ $\sum_{i=1}^{3} (f_i(t) - L_i)^2 \leq \sqrt{\frac{\varepsilon^2}{3} + \frac{\varepsilon^2}{3} + \frac{\varepsilon^2}{3}} = \varepsilon$

Distance vectors: $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ defined by $\|\mathbf{u} - \mathbf{v}\|$ = $\sqrt{\sum_{n=1}^{n}}$ $\sum_{i=1}^{\infty} (u_i - v_i)^2$

CONTINUOUS: $\mathbf{r}: I \to \mathbb{R}^n$ continuous at $a \in I$ if $\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$

SPACE CURVE: $C = \mathbf{r}(I)$ where $I \subset \mathbb{R}$ interval and $\mathbf{r} : I \to \mathbb{R}^3$ where r the PARIMACTERISATION OF C New spaces in this chapter without explanations:

Helix, toroidal spiral (lies on torus), trefoil knot, twisted cube

Lecture 3:

Definition 1: DERIVATIVE $\mathbf{r}'(t)$ defined as $\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0}$ $\mathbf{r}(t+h)-\mathbf{r}(t)$ h Remarks: $\Box \mathbf{r}'(t) = \text{tangent vector of the curve } C = \mathbf{r}(I)$ at the point $\mathbf{r}(t)$ where $t \in I$ \Box UNIT TANGENT VECTOR $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ $\frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ as long as $\mathbf{r}'(t) \neq 0$ Theorem 2: If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ where f, g, h differentiable: $\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$ Remarks: \Box second derivative also possible: $\mathbf{r}''(t) = (\mathbf{r}'(t))'$ Theorem 3: u, v are vectors, c is a scaler and f real valued function: 1 d $\frac{d}{dt}$ [**u**(t) + **v**(t)] = **u**'(t) + **v**'(t) 2 d $\frac{d}{dt}$ [cu(t)] = cu'(t) 3 d $\frac{d}{dt}$ $[f(t)u(t)]$ = $f'(t)u(t) + f(t)u'(t)$ 4 d $\frac{\overline{d}}{dt} \quad \left[\mathbf{u}(t)\cdot \mathbf{v}(t)\right] \quad \quad = \mathbf{u}'(t)\cdot \mathbf{v}(t) + \mathbf{u}(t)\cdot \mathbf{v}'(t)$ 5 d $\frac{\overline{d}}{dt} \quad \left[\mathbf{u}(t) \times \mathbf{v}(t)\right] \quad = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$ 6 d $\frac{d}{dt}$ [**u**(f(t))] = f'(t)**u**'(f(t))

Integrability,arclength and reparemeterization:

INTEGRABILITY: vector function integrable on interval $I \Leftrightarrow$ components integrable on I \int_a^b a $\mathbf{r}(t)dt = \begin{pmatrix} b \\ \int d\theta \end{pmatrix}$ a $f(t)dt$ **i** + \iint_a^b a $g(t)dt$ **j** + $(\int_0^b$ a $h(t)dt$)**k** $I = [a, b]$ and $\mathbf{r} : I \to \mathbb{R}^3$ continous differentiable s.t. $\mathbf{r}'(t)$ exists. Then r is of class C^1

We know that the length of a vector function S_i is given by: $\Delta S_i = ||\mathbf{r}(t_i) - \mathbf{r}(t_{i-1})||$ Where $\Delta x_i = f(t_i) - f(t_{i-1})$ and $\Delta y_i = g(t_i) - g(t_{i-1})$ and $\Delta z_i = h(t_i) - h(t_{i-1})$ So $\Delta S_i = \sqrt{\Delta x_i^2 + \Delta y_i^2 + \Delta z_i^2}$ ARCLENGTH OF $C' = \mathbf{r}(I)$: $\lim_{\max \Delta t_i \to 0} \sum_{i=1}^n$ $\sum_{i=1} \Delta S_i$ Theorem 1 \mathbb{R}^2 $L = \int_0^b$ a $\sqrt{[f'(t)]^2 + [g'(t)]^2}dt = \int_0^b$ a $\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}dt$ Theorem 2 \mathbb{R}^3 $L = \int_0^b$ a $\sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2}dt = \int_0^b$ a $\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 + (\frac{dz}{dt})^2}dt$ We can rewrite this all to $L = \int_a^b$ a $|\mathbf{r}'(t)|dt$ Theorem 3

If $\mathbf{r}(t) = f(t)\mathbf{i}(t) + g(t)\mathbf{j} + h(t)\mathbf{k}$ where $a \le t \le b$ and $\mathbf{r}(t)$ is at least of class C^1 then:

Theorem 6,7:ARC LENGTH FUNCTION: $s(t) = \int_0^t$ a $|\mathbf{r}'(u)|du = \int_a^t$ a $\sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2 + \left(\frac{dz}{du}\right)^2} du$ so then we see that $\frac{ds}{dt} = |\mathbf{r}'(t)|$

parameterize a curve w.r.t. its arc length: usefull method. Set the arc length equal to a function $s(t)$ and subsitute $t = s(t)$ in the original vector function.

Example:

A single curve can be represented by more then 1 vector function. For example: **theorem 4:** (1) $\mathbf{r}_1(t) = \langle t, t^2, t_3 \rangle$ where $1 \le t \le 2$ **theorem 5:** (2) $\mathbf{r}_2(u) = \langle e^u, e^{2u}, e^{3u} \rangle$ where $0 \le u \le \ln(2)$ Gives exactly the same graph

Independent length:

Lenght of curve C' does not depend on the parameterization in the following sense:

 \int_a^b a $\left\| \frac{d\mathbf{r}}{dt} \right\| dt = \int_{a}^{b}$ c $\left\Vert \frac{d\tilde{\mathbf{r}}}{du}\right\Vert du$ $h:[a,b] \to [c,d]C'$ and bijective. so $t \to u = h(t)$ s.t. $\mathbf{r}(t) = \tilde{\mathbf{r}}(h(t))$ PROOF:

recall substitution rule integrals. \int_a^b a $f(g(x))g'(x)dx =$ \int ^{\int} $g(a)$ $f(u)du$

$$
\int_{a}^{b} \left\| \frac{dx}{dt} \right\| dt = \int_{a}^{b} \left\| \frac{d\tilde{r}(h(t))}{dt} \right\| dt = \int_{a}^{b} \left\| \tilde{r}'(h(t)) \cdot h'(t) \right\| dt
$$
\n
$$
= \int_{a}^{b} \left\| \tilde{r}'(h(t)) \right\| |h'(t)| dt = \begin{cases} \int_{a}^{b} \left\| \tilde{r}'(h(t)) \right\| |h'(t)| dt, h' \ge 0 \\ \int_{a}^{b} \left\| \tilde{r}'(h(t)) \right\| |h'(t)| dt, h' < 0 \end{cases} = \int_{c}^{d} \left\| \frac{d\tilde{r}}{du}(u) \right\| du = du
$$

Because when first case $a \to c$ and $b \to d$ so then $\mathbf{r} = \tilde{\mathbf{r}}$ Second case $a \to d$ and $b \to c$ so then $\mathbf{r} \to -\tilde{\mathbf{r}}$ Note:

One natural parameterization of a curve is parameterization by arclength: $s(t) = \int_{0}^{t} ||\mathbf{r}'(t)||dt =$ length a

of the position of the curve c between the points $r(a)$ and $r(t)$ $s(t)$ resp. corresponds to $h(t)$ resp. to u in proposition above. Then $c = 0$ and $d = L$ Remarks:

 $\frac{ds}{dt} = \left\| \mathbf{r}'(t) \right\|$

in phyiscs: $\frac{ds}{dt}$ corresponds to the norm of the velocity vector, which we call speed.

Lecture 4:

Curvature:

SMOOTH CURVE if the curve has a SMOOTH PARAMETERIZATION: $\mathbf{r}'(t)$ is continuous and $\mathbf{r}'(t) \neq \mathbf{0}$ Recall: Unit tangent: Indicates direction of curve: $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ $|\mathbf{r}'(t)|$

Definition 8: CURVATURE: The rate of change of unit tangent vector w.r.t. arc length. curve of class C^2 where $\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$

Class C where $\kappa = \frac{1}{ds}$ $\frac{ds}{dt}$ = $\frac{dr'}{dt} = \frac{r'}{dt}$ and after that fill in the formula for the unit tangent vector we find $\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}$ $\frac{\left|\mathbf{T}'(t)\right|}{\left|\mathbf{r}'(t)\right|} = \frac{\left|\mathbf{r}'(t)\times\mathbf{r}"(t)\right|}{\left|\mathbf{r}'(t)\right|^3}$ $|\mathbf{r}'(t)|^3$

Theorem 11: when we have the curvature $y = f(x)$ then $\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{1.5}}$

Moving frames and torsion:

Let $C: \mathbf{r}: I \to \mathbb{R}^3$ of class C^3 then we can find 4 mutually orthogonal vectors of length 1 at each point of C

UNIT TANGENT VECTOR: $\mathbf{T}(r) = \frac{1}{\|\mathbf{r}'(t)\|} \mathbf{r}'(t)$

(PRINCIPAL) UNIT NORMAL (VECTOR): direction in which the curve is turning at each point. $N(t)$ $\mathbf{T}'(t)$ $|\mathbf{T}'(t)|$

BINORMAL VECTOR: perpendicular to **T** and **N** defined by $\mathbf{B}(t) = \mathbf{N}(t) \times \mathbf{T}(t)$

NORMAL PLANE: the blane determine by N and B at a point P on a curve C

OSCULATING PLANE: The plane determined by \mathbf{T} and \mathbf{N} of C at a point P

OSCULATING CIRCLE/CIRCLE OF CURVATURE: circle lies in oscolating plane, same tangetn at C at P

on the side on towards **N** points, and has radius $\rho = \frac{1}{\kappa}$
TORSION: (τ) which we can find by **Definition 13** $\tau = -\frac{d\mathbf{B}}{ds}\mathbf{N} = -\tau\mathbf{N}$ measures how spatial (non planair) a curve is.

,or Definition 12: $\frac{dB}{ds} = -\tau N$ $\frac{d\mathbf{B}}{ds}=-\tau\mathbf{N}$ Definition $14: \tau(t) = -\frac{\mathbf{B}'(t) \cdot \mathbf{N}(t)}{|\mathbf{r}'(t)|}$ $|\mathbf{r}'(t)|$ It can be shown that: $\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$ and $\frac{d\mathbf{B}}{ds} = -\tau N$ but $\frac{d\mathbf{N}}{ds} = -\kappa \mathbf{T} + \tau \mathbf{B}$ So $\sqrt{ }$ \mathcal{L} \mathbf{T}' \mathbf{N}^{\prime} \mathbf{B}' \setminus $\Big\} =$ $\sqrt{ }$ \mathcal{L} $0 \kappa 0$ $-\kappa$ 0 τ $0 -\tau 0$ \setminus $\overline{1}$ $\sqrt{ }$ $\overline{1}$ T N B \setminus which is called the Frenet-serret equations.

TORSION OF A CURVE BY THE VECTOR FUNCTION: **Theorem 15:** $\tau(t) = \frac{[\mathbf{r}'(t) \times \mathbf{r}''(t)] \cdot \mathbf{r}''''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|^2}$ $\overline{}$ $|\mathbf{r}'(t)\times\mathbf{r}"(t)|^2$

Example:

$$
\mathbf{r} : [-1, 1] \to \mathbb{R}^2 \text{ so } t \to \langle t^3, t^2 \rangle \text{ so } y = x \text{ gives } t^2 = t^3 \text{ so } t = \sqrt{t^3}
$$
\n
$$
\mathbf{r}(t) = a \cos(t)\mathbf{i} + a \sin(t)\mathbf{j} + bt\mathbf{k} \text{ where } a, b \ge 0
$$
\n
$$
\mathbf{T}(t) = \frac{1}{\|\mathbf{r}'(t)\|} \mathbf{r}'(t) = \frac{-a \sin(t)\mathbf{i} + a \cos(t)\mathbf{j} + bk}{\sqrt{a^2 + b^2}}
$$
\n
$$
\mathbf{N}(t) = \frac{1}{\|\mathbf{T}'(t)\|} \mathbf{T}'(t) = \frac{\frac{-a \cos(t)\mathbf{i} - a \sin(t)\mathbf{j}}{\sqrt{a^2 + b^2}}}{\sqrt{a^2 + b^2}} = -\cos(t)\mathbf{i} - \sin(t)\mathbf{j}
$$
\n
$$
\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{a}{a^2 + b^2}
$$
\nThe curvature of a circle is given by $\frac{1}{r}$ where r = radius.
\n
$$
\mathbf{B} = \mathbf{T} \times \mathbf{N} = (\frac{b}{\sqrt{a^2 + b^2}} \sin(t)\mathbf{i} - (\frac{b}{\sqrt{a^2 + b^2}} \cos(t)\mathbf{j} + \frac{a}{\sqrt{a^2 + b^2}}\mathbf{k})
$$

Note: $\frac{d\mathbf{B}}{dt} = (\frac{b}{\sqrt{a^2+b^2}}\cos(t))\mathbf{i} + (\frac{b}{\sqrt{a^2+b^2}}\sin(t))\mathbf{j}$ So we see that this vector is parallel to N

Application: linear approximation:

 $\mathbf{r}: I \subset \mathbb{R} \to \mathbb{R}^n$ different at $t \in I$ so: $\exists \mathbf{v} \in \mathbb{R}^n \text{ s.t. } \lim_{h \to 0}$ $\frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}=\mathbf{v}$ $\Leftrightarrow \exists \mathbf{v} \in \mathbb{R}^n \text{ s.t. } \lim_{\tau \to 0} \frac{\mathbf{r}(\tau) - \mathbf{r}(t)}{\tau - t} = \mathbf{v}$ $\Leftrightarrow \exists \mathbf{v} \in \mathbb{R}^n \text{ s.t. } \lim_{\tau \to t} \frac{\mathbf{r}(\tau) - (\mathbf{r}(t) + \mathbf{v}(\tau - t))}{\tau - t} = 0$ \Leftrightarrow $\mathbf{r}(t) + \mathbf{v}(\tau - t)$ the linear approximation of the function \mathbf{r} at $\mathbf{r}(t)$ $L(\tau) = \mathbf{r}(t) + \mathbf{v}(\tau - t)$ so the linearisation of **r**

Lecture 5:

functions:

Definition let $(x, y) \rightarrow f(x, y)$ Then: DOMAIN: $(x, y) \in D$ then D domain. RANGE: ${f(x, y) | (x, y) \in D}$ When we have $z = f(x, y)$ then x, y INDEPENDENT VARIABLES and z DEPENDENT VARIABLES. GRAPH: if f function two variables with domain D then GRAPH set of all points $(x, y, z) \in \mathbb{R}^3$ s.t. $z =$ $f(x, y)$ and $(x, y) \in D$ LEVEL CURVES: f two variables are the curves with equations $f(x, y) = k$ where k constant in range f contour/level map: collection of level curves. FUNCTION OF 3 VARIABLES: ordered triple $(x, y, z) \in D \subset \mathbb{R}^3$ where D domain assings to a unique real number $f(x, y, z)$ HALF-SPACE CONSISTING ALL POINTS ABOVE PLANE, $z = y: D = \{(x, y, z) \in \mathbb{R}^3 | z > y\}$ LEVEL SURFACES: surfaces s.t. $f(x, y, z) = k$ where k a constant.

Example:

A company uses n different ingedients in making a food product, where c_i is the cost per unit of the *i*th ingredient, you need x_i units of the ith ingredient, then the total cost:

 $C = f(x_1, \ldots, x_n) = c_1 x_1 + \ldots + c_n x_n$ We can rewrite this to $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$

There are three ways of looking at a function f defined on subset \mathbb{R}^n :

(1) function real variables x_1, \ldots, x_n (2) function single point variable (x_1, \ldots, x_n)

(3) function single vector variable $\mathbf{x} = \langle x_1, \ldots, x_n \rangle$

Limits and continuous

Definition 1: f function 2 variables, domain D includes points arbitrarily close to (a, b) . Then LIMIT OF $f(x, y)$ AS $(x, y) \rightarrow (a, b)$ IS L: if for every $\varepsilon > 0$ there $\exists \delta > 0$ s.t.: if $(x, y) \in D$ and $9 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \Rightarrow |f(x, y) - L| < \varepsilon$ Notation: $\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{\substack{x\to a\\ y\to b}}$ $= L \text{ and } f(x, y) \to L \text{ as } (x, y) \to (a, b)$ Existence of a limit: If $f(x, y) \to L_1$ as $(x, y) \to (a, b)$ along a path C_1 and $f(x, y) \to L_2$ as $(x, y) \to (a, b)$ along a path C_2 where $L_1 \neq$ L_2 then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

Example:

1:
\n
$$
f: \mathbb{R}^2 \to \mathbb{R}
$$

\n $(x, y) \to 3x - 5y$ show $\lim_{(x,y)\to(1,-1)} f(x, y) = 8$
\nLet $\varepsilon > 0$ to be shown, $\exists \delta > 0$ s.t. $0 < ||(x, y) - (1, -1)|| < \delta$ implies $|3x - 5y - 8| < \varepsilon$
\n $|x - 1|$
\n $|y + 1|$
\n $|3(x - 1)| + |-5(y + 1)| = 3|x - 1| + 5|y + 1|$
\nWe know that $|x - 1| < \delta$ and $|y + 1| < \delta$

So we see that $||(x, y) - (1, -1)|| \le 8\delta$ so then we can set $\varepsilon = \frac{\delta}{8}$ so then we see that $||(x - y) - (1, -1)|| < \varepsilon$ 2: $f:\mathbb{R}^2\setminus\{(0,0\}\to\mathbb{R})$ $(x, y) \rightarrow f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$ does this function have a limit at $(x, y) = (0, 0)$? $f(x, 0) = \frac{x^2}{x^2} = 1$ true for all $x \neq 0$ $f(0, y) = \frac{-y^2}{y^2} = -1$ for all $y \neq 0$ f has no limit at the the point $(x, y) = (0, 0)$ 3: Sometimes polar coordinates useful to decide whether function has limit. $x = r \cos(\theta)$ and $y = r \sin(\theta)$ does $f(x,y) = \frac{x^3 + x^5}{x^2 + y^2}$ have a limit at the origin? $rac{x^3+x^5}{x^2+y^2} = \frac{r^3\cos^3(\theta)+r^5\cos^5(\theta)}{r^2\cos^2(\theta)+r^2\sin^2(\theta)}$ $\frac{r^3\cos^3(\theta)+r^3\cos^3(\theta)}{r^2\cos^2(\theta)+r^2\sin^2(\theta)}=r(\cos^3(\theta)+r^2\cos^5(\theta))=r\cos(\theta)(\cos^2(\theta)+r^2\cos^4(\theta))$ Because $|\cos(\theta)| \leq 1$ for all θ Hence: $-r(1+r^2) \leq r \cos(\theta)(\cos^2(\theta) + r^2 \cos^4(\theta)) \leq r(1+r^2)$ When $x, y \to 0$ we know that $r \to 0$ and therefore $-r(1 + r^2) \to 0$ and $r(1 + r^2) \to 0$ so by squeezing theorem: $\lim_{(x,y)\to(0,0)} f(x,y) \to 0$

Properties of limits:

Sum Law $\lim [f(x) + g(x)] = \lim f(x) + \lim g(x)$ Differnece law $\lim [f(x) - g(x)] = \lim f(x) - \lim g(x)$ Constant multiple $\lim [cf(x)] = c \lim f(x)$ Product law $\lim [f(x)g(x)] = \lim f(x) \lim g(x)$ Quotient rule $\left[\frac{f(x)}{g(x)}\right] = \frac{\lim f(x)}{\lim g(x)}$ where $\lim g(x) \neq 0$ $2(\&\text{ below})$ $\lim_{(x,y)\to(a,b)} x = a$ $\lim_{(x,y)\to(a,b)} y = b$ $\lim_{(x,y)\to(a,b)} c = c$

POLYNOMIAL FUCNTION: sum of terms of the form $cx^m y^n$ where c constant and $m, n \geq 0$ RATIONAL FUNCTION: ratio two polynomials.

 $\textbf{Definition 3:} \lim_{(x,y)\to(a,b)}p(x,y)=p(a,b)$ **Definition 4:** $\lim_{(x,y)\to(a,b)} q(x,y) = \lim_{(x,y)\to(a,b)}$ $\frac{p(x,y)}{r(x,y)} = \frac{p(a,b)}{r(a,b)} = q(a,b)$ **Definition 6:** f continuous at (a, b) if $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$. Continuous on domain D if it is continuous at every $(a, b) \in D$ **Definition 7:** f defined on subset D of \mathbb{R}^n then $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$ means: $\forall \varepsilon > 0 \exists \delta > 0$ s.t. $\mathbf{x} \in D$ and $0 < |\mathbf{x} - \mathbf{a}| < \delta$ then $\hat{f}(\mathbf{x}) - L| < \varepsilon$ CONTINUITY OF A VECTOR:

 $\mathbf{a} \in D$ and $\lim_{\mathbf{x} \to \mathbf{a}} f(x) = f(a)$ then f continuous at a

Derivatives of functions:

Definition 4:

Definition 1 and 2: PARTIAL DERIVATIVE OF F W.R.T. $X f_x(a, b) = g'(a)$ where $g(x) = f(x, b)$ so $f_x(a, b) =$ $\lim_{h\to 0}$ $f(a+h,b)-f(a,b)$ h

Definition 3: PARTIAL DERIVATIVE OF F W.R.T. Y, $f_y(a, b) = \lim_{h \to 0}$ $f(a,b+h)-f(a,b)$ h

Notation: $f_x(x,y) = f_x = \frac{\delta f}{\delta x} = \frac{\delta}{\delta x} f(x,y) = \frac{\delta z}{\delta x} = f_1 = D_1 f = D_x f$ $f_y(x, y) = f_y = \frac{\delta f}{\delta y} = \frac{\delta}{\delta y} f(x, y) = \frac{\delta z}{\delta y} = f_2 = D_2 f = D_y f$ Rules:

To find f_x regard y constante, differentiate $f(x, y)$ w.r.t. x Finding f_y similar.

If
$$
u = f(x_1, ..., x_n)
$$
 then $\frac{\delta u}{\delta x_i} = \lim_{h \to 0} \frac{f(x_1, ..., x_{i-1}, x_i + h, ..., x_n) - f(x_1, ..., x_n)}{h} = \frac{\delta f}{\delta x_i} = f_{x_i} = f_i = D_i f$

Example:

 $D \subset \mathbb{R}^2$ where $f(x, y) = 4 - x^2 - 2y^2$ $f_x(1,1) = \lim_{h \to 0}$ $\frac{f(1+h,1)-f(1,1)}{h} = \lim_{h\to 0}$ $\frac{-2h-h^2}{h} = \lim_{h \to 0} -2 - h = -2$ Similary $f_y(1,1) = -4$

Cruve C'_1 parameterization: $r_1 = x \rightarrow (x, 1, f(x, 1)) = (x, 1, 4 - x^{-2}) = (x, 1, 2 - x^{2})$

Higher derivatives:

We can also compute the second partial derivative: $(f_x)_x = f_{xx} = f_{11} = \frac{\delta}{\delta x} \left(\frac{\delta f}{\delta x} \right) = \frac{\delta^2 f}{\delta x^2} = \frac{\delta^2 z}{\delta x^2}$ $(f_x)_y = f_{xy} = f_{12} = \frac{\delta}{\delta y} (\frac{\delta f}{\delta x}) = \frac{\delta^2 f}{\delta x \delta y} = \frac{\delta^2 z}{\delta x \delta y}$ $(f_y)_y = f_{yy} = f_{22} = \frac{\delta}{\delta y} (\frac{\delta f}{\delta y}) = \frac{\delta^2 f}{\delta y^2} = \frac{\delta^2 z}{\delta y^2}$ $(f_y)_x = f_{yx} = f_{21} = \frac{\delta}{\delta x} (\frac{\delta f}{\delta y}) = \frac{\delta^2 f}{\delta y \delta x} = \frac{\delta^2 z}{\delta y \delta x}$
Clairaut's theorem: Suppose f defined on disk D that contains (a, b) . If f_{xy} and f_{yx} both continuous on D then $f_{xy}(a, b) = f_{yx}(a, b)$ HARMONIC FUNCTIONS: solution of the LAPLACE'S EQUATION: $\frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = 0$ WAVE EQUATION: $\frac{\delta^2 u}{\delta t^2} = a^2 \frac{\delta^2 u}{\delta x^2}$ decribes motion of waveform.

Tangent plane,linear approximation:

Definition 2: f continuous partial derivative. Then equation tangent plane surface $z = f(x, y)$ at $P(x_0, y_0, z_0) =$ $f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ LINEARIZATION: Definition 3: $L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$

Linear approximation or tangent plane approximation:

 \mathbb{R}^2 Definition 4: $f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$ \mathbb{R}^3 f(x, y, z) ≈ f(a, b, c) + f_x(a, b, c)(x - a) + f_y(a, b, c)(y - b) + f_z(a, b, c)(z - c)

Lecture 6:

Differentiability:

Theorem 5: f differentiable at a then $\Delta y = f'(a)\Delta x + \varepsilon \Delta x$ where $\varepsilon \to 0$ as $\Delta x \to 0$

INCREMENT: change in value of f when (x, y) changes from (a, b) to $(a + \Delta x, b + \Delta y)$: \mathbb{R}^2

Differentiable:

(1) **Definition 7:** If $z = f(x, y)$ then f differentiable at (a, b) if: $\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$ When $(\Delta x, \Delta y) \rightarrow (0, 0)$ then $\varepsilon_1 \& \varepsilon_2 \rightarrow 0$

(2) **Theorem 8:** if partial derivatives f_x and f_y exists near (a, b) and continuous at (a, b) then f differentiable at (a, b)

Differentials:

We already now that the differential of y is defined as $dy = f'(x)dx$ when $y = f(x)$ **Definition 9.** TOTAL DIFFERENTIAL

 \mathbb{R}^2 **2** Definition 10: $dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\delta z}{\delta x}dx + \frac{\delta z}{\delta y}dy$ \mathbb{R}^3 3 $dw = \frac{\delta w}{\delta x} dx + \frac{\delta w}{\delta y} dy + \frac{\delta w}{\delta z} dz$

Chain rule:

Implicit Function theorem:

Theorem 5:
 $\frac{dy}{dx} = -\frac{\frac{\delta F}{\delta x}}{\frac{\delta F}{\delta y}} = -\frac{F_x}{F_y}$ CONDITIONS: (1) F defined on a disk containing (a, b) $(2) F(a, b) = 0, \text{but } F_u(a, b) \neq 0$ (3) F_x and F_y continuous on disk. \Rightarrow then $F(x, y) = 0$ deifnes y as function of x near (a, b) derivative given by function above.

Theorem 6: similar to 5: $\frac{\delta z}{\delta x} = -\frac{\frac{\delta F}{\delta x}}{\frac{\delta F}{\delta z}} - 0 \frac{F_x}{F_y}$ and $\frac{\delta z}{\delta y} = \frac{\frac{\delta F}{\delta y}}{\frac{\delta F}{\delta z}} = -\frac{F_y}{F_z}$ F_z Where \mathring{F} on sphere containing (a, b, c) and $F(a, b, c) = 0$ and $F_z(a, b, c) \neq 0$ and F_x, F_y, F_z continuous inside sphere, then $F(x, y, z) = 0$ defines z as function x and y near (a, b, c) then function differentiable.

textbfDefinition 6: Δz $\Delta w = f(x)$

Lecture 7:

Direction derivative:

Two dimensional:

14.6:

Theorem 1:

 $z = f(x, y)$ then we have:

 $f_x(x_0, y_0) = \lim_{h \to 0}$ $\frac{f(x_0+h,y_0)-f(x_0,y_0)}{h}$ and $f_y(x_0,y_0) = \lim_{h\to 0}$ $\frac{f(x_0, y_0+h)-f(x_0, y_0)}{h}$ partial derivatives. DIRECTIONAL DERIVATIVES:

 $f_x(x_0, y_0)$ is rate of change z in direction of x so the direction of unit vector j (similar for $f_y(x_0, y_0)$ and z) **Theorem 2:** DIRECTION DERIVATIVE of f at (x_0, y_0) in the direction of unit vector $\mathbf{u} = \langle a, b \rangle$ is: $D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0}$ $\frac{f(x_0+ha,y_0+hb)-f(x_0,y_0)}{h}$ if this limit exists **Theorem 3:** $D_{\mathbf{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b$ where $\mathbf{u} = \langle a, b \rangle$ and $f_{\mathbf{u}}$ the directional derivative. **Definition 8**GRADIENT: if f function 2 variables, then GRADIENT OF: f

 $\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\delta f}{\delta x}\mathbf{i} + \frac{\delta f}{\delta y}\mathbf{j}$ Rewriting 7: $D_{\mathbf{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b = \langle f_x(x,y), f_y(x,y) \rangle \cdot \langle a,b \rangle = \langle f_x(x,y), f_y(x,y) \rangle \cdot \mathbf{u}$ **Definition 9:** $D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$

3 dimensional:

Theorem 10: DIRECTIONAL DERIVATIVES: f at (x_0, y_0, z_0) of $\mathbf{u} = \langle a, b, c \rangle$ is: $D\mathbf{u}f(x_0,y_0,z_0)=\lim_{h\to 0}$ $f(x_0+ha,y_0+hb,z_1+hc)-f(x_0,y_0,z_0)$ $\frac{h^{(n)}(x_0, y_0, z_0)}{h}$ if limit exists. **Theorem 11:** $D_{\mathbf{u}}f(\mathbf{x}_0) = \lim_{h \to 0}$ $\frac{f(\mathbf{x}_0+h\mathbf{u})-f(\mathbf{x}_0)}{h}$ **Theorem 12:** $D_{\mathbf{u}}f(x, y, z) = f_x(x, y, z)a + f_y(x, y, z)b + f_z(x, y, z)c$ **Theorem 13:** Gradient: $\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\delta f}{\delta x}\mathbf{i} + \frac{\delta f}{\delta y}\mathbf{j} + \frac{\delta f}{\delta z}\mathbf{k}$ **Theorem 14:** $D_{\mathbf{u}}f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$

maximize

Theorem 15: suppose f differentiable function 2 or 3 variables. Maximum value of $D_{\approx} f(\mathbf{x})$ = $|\nabla f(\mathbf{x})|$ and it occurs when **u** same direction as $\nabla f(\mathbf{x})$

Example:

 $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = x^2 + y^2$ So $\nabla f(x_0, y_0) = (2x_0, 2y_0)$ So the levels will be circles. When we draw the vectors, we see that the vector is perpendicular to the tangent line at the circle.

Tangent plane level surfaces:

Let S surface with equation $F(x, y, z) = k$. So level surface function F. Let $P(x_0, y_0, z_0)$ on S. Let C any curves on S through P. Then $C : \mathbf{r}(t) = \langle x_0, y_0, z_0 \rangle$. Let t_0 correspond to P so: $\mathbf{r}(t_0) = \langle x_0, y_0, z_0 \rangle$ but we can rewrite this to: **Statement 16:** $F(x(t), y(t), z(t)) = k$ and when F differentiable then by chain rule: Statement 17: $\frac{\delta F}{\delta x} \frac{dx}{dt} + \frac{\delta F}{\delta y} \frac{dy}{dt} + \frac{\delta F}{\delta z} \frac{dz}{dt} = 0$ But therefore **Statement** $\overline{18: \nabla F(x_0, y_0, z_0) \cdot \mathbf{r}'(t_0) = 0}$ **Theorem 19:** TANGENT PLANE TO LEVEL SURFACES: if $\nabla F(x_0, y_0, z_0) \neq 0$ then the tangent plane is equal to: $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$ NORMAL LINE: to S at P is the line through P perpendicular to S given by: Theorem 20: $\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}$

Properties of gradient:

Let f differentiable and $\nabla f(\mathbf{x}) \neq \mathbf{0}$ then:

(1) DIRECTIONAL DERIVATIVE $D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u}$

 $(2) \nabla f(\mathbf{x})$ points in direciton maximum rate increasing f at **x** and maximum rate $|\nabla f(\mathbf{x})|$

 $(3) \nabla f(\mathbf{x})$ perpendicular to level curve or level surfaces of f through x

maxima and minima:

14.7:

Definition 1: Function 2 variables then: LOCAL MAXIMUM(MINIMUM) at (a, b) if $f(x, y) \leq (>) f(a, b)$ when (x, y) near (a, b) So $f(x, y) \leq (\geq) f(a, b)$ for all points (x, y) in some disk with center (a, b) . LOCAL MAXIMUM (MINIMUM) VALUE name of $f(a, b)$ in this case. **Theorem 2:** f local maximum or minimum at (a, b) and first order partial derivatives f exists at (a, b) then $f_x(a, b)$ 0 and $f_y(a, b) = 0$ CRITICAL POINT OR STATIONARY: of f if $f_x(a, b) = 0$ and $f_y(a, b) = 0$ or one of these partial derivatives does not exists. So then $\nabla f(a, b) = 0$ SADDLE POINT: if $f_x(a, b) = f_y(a, b) = 0$ but $f(a, b)$ is not a local maximum and not a local minimum.

Example:

 $D = \mathbb{R}^2$, then $f(x, y) = 1 - |x| - |y|$ then f global maximum at $(x, y) = (0, 0)$ **1**: $D = \mathbb{R}^2$ then $f(x, y) = \frac{1}{3}x^3 - x + y^2 = g(x) + h(y)$

Lecture 8:

maxima and minima continued:

 $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ of class C^2 and has critical point $(a, b) \in D$ $d = det(HESIAN MATRIX) =$ $f_{xx}(a, b)$ $f_{xy}(a, b)$ $f_{yx}(a, b)$ $f_{yy}(a, b)$ $= f_{xx}(a, b) \cdot f_{yy}(a, b) - (f_{xy}(a, b))^2$ Case 1: $d > 0$ and $f_{xx}(a, b) > 0$ then f local minimum at (a, b) Case 2: $d > 0$ and $f_{xx}(a, b) < 0$ then f local maximum at (a, b) Case 3: $d < 0$ then f has a saddle at (a, b) **Theorem 7:** Let $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ where $(a, b) \in D$ then $f(a, b)$ is a ABSOLUTE MAXIMUM(MINIMUM) if $f(a, b) \ge$ $(<) f(x, y)$ for all $(x, y) \in D$ Closed set: if a set contains its boundaries. the complement of this set is open. bounded set:set that contains not all of its boundarys. Theorem 8: extreme value theorem for two functions of two variables: if f continuous on closed& compact set $D \subset \mathbb{R}^n$ thnef attains absolute maximum at $f(x_1, y_1)$ and absolute mini-

mum $f(x_2, y_2)$ for (x_1, y_1) & $(x_2, y_2) \in D$

Theorem 9: to find absolute maximum (minimum) on closed and bounded set:

(1) find $f(a, b)$ where (a, b) critical point in D

(2) find extreme values on boundaries

(3) the largest (smallest) value of step 1 and step 2 is the absolute maximum (minimum) value.

Lagrange multipliers

14.8:

Theorem 1: When $\nabla f(x_0, y_0, z_0)$ and $\nabla g(x_0, y_0, z_0)$ where $\nabla g(x_0, y_0, z_0) \neq \mathbf{0}$ there exists LAGRANGE MULTIPLIER λ s.t. $\nabla f(x_0, y_0, z_0) = \lambda \nabla q(x_0, y_0, z_0)$

PROOF:

 $t \to \mathbf{r}(t)$ parameterization of a curve in S s.t. $\mathbf{r}(t) = a$

Then $(f \circ \mathbf{r})(t)$ extremum at t_0

Hence $\frac{d}{dt}f(\mathbf{r}(t_0)) = \nabla f(\mathbf{r}(t_0)) \cdot \mathbf{r}'(t_0) = \nabla f(a) \cdot \mathbf{r}'(t_0) = 0$

This holds for all curves in S at $a \in S$

Together with the tangent vectors span tangent plane of S at $a \in S$

So $\forall f(a) \bot S \mathcal{Q} a$ and hence is parallel to $\forall g(a)$

Method lagrange multipliers:

Find maximum was minimum values $f(x, y, z)$ to the constraint $g(x, y, z) = k$ assuming extreme values exists, and $\nabla g \neq \mathbf{0}$ on $g(x, y, z) = k$

(1) find all values s.t. $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$ and $g(x, y, z) = k$

(a) $f_x(x, y, z) = \lambda g_x(x, y, z)$ and $f_y(x, y, z) = \lambda g_y(x, y, z)$ and $f_z(x, y, z) = \lambda g_z(x, y, z)$

(2) evaluate f at the founded values of (x, y, z) the largest: maximum value of f smallest: minimum value of f

Theorem 16: LAGRANGE MULTIPLIERS TWO CONSTRAINS:

 $\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) + \mu \nabla h(x_0, y_0, z_0)$ So then $f_x = \lambda g_x + \mu h_x$ and $f_y = \lambda g_y + \mu h_y$ and $f_z = \lambda g_z + \mu h_z$ Furthermore $q(x, y, z) = k$ and $h(x, y, z) = c$

Lecture 9:

Double integral:

Definition 1: RIEMANNSUM: $\sum_{n=1}^{n}$ $i=1$ $f(x_i^\star)\Delta x$ and $\textbf{Definition 2:} \text{INTERAL:} \int\limits_0^b$ $\int_a^{\infty} f(x)dx = \lim_{n \to \infty} f(x_i^{\star}) \Delta x$ SAMPLE POINT $(x_{ij}^{\star}, y_{ij}^{\star})$ in each R_{ij} **Definition 3:** So then we have that $V = \sum_{n=1}^{m}$ $i=1$ $\sum_{n=1}^{\infty}$ $j=1$ $f(x_{ij}^{\star}, y_{ij}^{\star})\Delta A$ VOLUME of the solid S that lies under f and above rectangle R Definition 4: $V = \lim_{(m,n)\to\infty} \sum_{i=1}^m$ $i=1$ $\sum_{n=1}^{\infty}$ $j=1$ $f(x_{ij}^{\star}y_{ij}^{\star})\Delta A$ **Definition 5:** DOUBLE INTEGRAL of f over rectangle R is: \int R $f(x,y)dA = \lim_{(m,n)\to\infty} \sum_{i=1}^m$ $i=1$ $\sum_{n=1}^{\infty}$ $j=1$ $f(x_{ij}^{\star}y_{ij}^{\star})\Delta A$ If this limit exists. f is INTEGRABLE if the limit in definition 5 exists. Double riemann sum:the double sum in definition 5. Definition 6:

If we choose $(x_{ij}^{\star}, y_{ij}^{\star}) = (x_i, y_i)$ then we get:

 \int $\int\limits_R f(x,y)dA = \lim\limits_{m,n\to\infty}\sum\limits_{i=1}^m$ $i=1$ $\sum_{n=1}^{\infty}$ $\sum_{i=1} f(x_i, y_i) \Delta A$

So therefore, if $f(x, y) \ge 0$ then V volume lies above rectangle R and below surface $z = f(x, y)$ is $V =$ $\int\int f(x,y)dA$

$\stackrel{R}{\text{Midpoint}}$ rule:

 \int R $f(X, y)dA = \sum_{n=1}^{m}$ $i=1$ $\sum_{n=1}^{\infty}$ $\sum_{i=1} f(\overline{x_i}, \overline{y_i}) \Delta A$ where $\overline{x_i}$ midpoint $[x_{i-1}, x_i]$ and $\overline{y_i}$ midpoint $[y_{i-1}, y_i]$

Iterated integarls:

Suppose f integrable function on $R = [a, b] \times [c, d]$ PARTIAL INTEGRATION W.R.T. Y: held the other variables fixed and integrate with respect ot y

We see that $A(x) = \int_a^b$ c $f(x, y)dy$

 $\operatorname{Definition}$ 7: $\int\limits_0^b$ a $A(x)dx = \int_a^b$ a \int_a^d c $f(x, y)dy]dx$

ITERATED INTEGRAL: The integral on the right side. **Theorem 10: Fubini's theorem:** f continuous on rectangle: $R = \{(x, y) | a \le x \le b, c \le y \le c\}$ d } then:

$$
\iint_R f(x, y) dA = \int_a^b \int_c^d f(x, y) dy dx = \int_c^d \int_c^b f(x, y) dx dy
$$

Theorem 11:

$$
\iint_R g(x)h(y) dA = \int_a^b g(x) dx \int_c^d h(y) dy
$$
 where $R = [a, b] \times [c, d]$

General double integrals

15.2:

To define \int fdA where D bounded, let R rectangle containing D Extend f to R by defining:

D $\textbf{Definition 1: } f^{\text{ext}}(x,y) = \begin{cases} f(x,y) \, \text{if} \, (x,y) \in D \end{cases}$ 0 if $(x, y) \notin D$ **Defintion 2:** We define \int D fdA to be \int R $f^{\text{ext}}dA$

Elementary regions in R2

Annulus: Region between two circles.

Properties double integrals:

Property 5: \int

D $[f(x,y)+g(x,y)]dA=\int$ D $f(x, y)dA + \int$ D $g(x, y)dA$ Property 6: for constant c we have \int $cf(x,y)dA = c\int$ $f(x, y)dA$

D D Property 7: If $f(x, y) \ge g(x, y)$ for all $(x, y) \in D$: \int D $f(x,y)dA \geq \int$ D $g(x, y)dA$ Property 8: If $D = D_1 \cup D_2$ such that D_1 and D_2 does not overlap then: \int D $f(x, y)dA = \int$ D_1 $f(x, y)dA + \int$ $D₂$ $f(x, y)dA$ Property 9: \int D $1dA = A(D)$ Property 10: if $m \le f(x, y) \le M$ for all $(x, y) \in D$: $m \cdot A(D) \leq \int$ $f(x, y)dA \leq M \cdot A(D)$

D

Lecture 10:

Rewrite a function to polar coordinates by: $r^2 = x^2y^2$ and $x = r \cos(\theta)$ and $y = r \sin(\theta)$

Definition 2:

f continuous on polar rectangle R given by $0 \le a \le r \le b$ and $\alpha \le \theta \le \beta$ where $0 \le \beta - \alpha \le 2\pi$

$$
\int\int\limits_R f(x,y)dA = \int\limits_{\alpha}^{\beta} \int\limits_a^b f(r\cos(\theta), r\sin(\theta))r dr d\theta
$$

Theorem 3:

If f continuous on polar region $D = \{(r, \theta) | \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta) \}$ then: \int $f(x, y)dA =$ \int $\mathop{h_2(\theta)}\limits_{\int}$ $f(r\cos(\theta), r\sin(\theta))r dr d\theta$

D Example:

1:
\n
$$
x^{2} + y^{2} = 4 \text{ so then } f(x, y) = x^{2} + y
$$
\n
$$
\int_{D} \int_{D} f(x, y) dA = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} (r^{2} \cos^{2}(\theta) + r \sin(\theta)) r dr d\theta
$$
\n
$$
= \int_{0}^{\frac{\pi}{2}} \frac{1}{4} r^{4} \cos^{2}(\theta) + \frac{1}{3} r^{2} \sin(\theta) \Big|_{r=1}^{r=2} d\theta = \int_{0}^{\frac{\pi}{2}} (4 \cos^{2} \theta + \frac{8}{3} \sin \theta) d\theta = 2(\cos \theta \sin \theta + \theta - \frac{4}{3} \cos \theta) \Big|_{0}^{\frac{\pi}{2}} = \pi + \frac{8}{3}
$$

Applications:

Whole paragraph 15.4 is about this:

α

 $h_1(\theta)$

- (a) Density
- (b) electric charge
- (c) moment (of inertia)
- (d) radius of gyration of a lamina
- (e) Probability
- (f) Joint density function
- (g) Expected values (X-mean and Y-mean)

Surface area:

Paragraph 15.5: SURFACE AREA area of a surface Definition $1: A(S) = \lim_{m,n \to \infty} \sum_{i=1}^{m}$ $i=1$ $\sum_{n=1}^{\infty}$ $\sum_{i=1} \Delta T_{ij}$ **Definition 2 and 3:** if $z = f(x, y)$ where $(x, y) \in D$ and $f_x \& f_y$ continuous: $A(s) = \int$ D $\sqrt{[f_x(x,y)]^2 + [f_y(x,y)]^2 + 1} dA = \int$ D $\sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2}dA$ Paragraph 15.6:

Triple integrals:

Definition 1: simples case $B = \{(x, y, z) | a \le x \le b, c \le y \le d, r \le z \le s\}$ **Definition 2:** Triple Riemann sum: $\sum_{i=1}^{l}$ $i=1$ $\sum_{i=1}^{m}$ $j=1$ $\sum_{n=1}^{\infty}$ $k=1$ $(x_{ijk}^{\star}, y_{ijk}^{\star}, z_{ijk}^{\star})\Delta V$ Definition 3: TRIPLE INTEGRAL IS EQUAL TO: \int B $\int f(x, y, z)dV = \lim_{l,m,n \to \infty} \sum_{i=1}^{l}$ $i=1$ $\sum_{i=1}^{m}$ $j=1$ $\sum_{n=1}^{\infty}$ $k=1$ $(x_{ijk}^{\star}, y_{ijk}^{\star}, z_{ijk}^{\star})\Delta V$

exists.

Fubini's theorem for triple integrals, theorem 4:

If f continuous on $B = [a, b] \times [c, d] \times [p, q]$ then $\int \int$ B $fdV = \int_{0}^{b}$ a \int_a^b c \int_{0}^{a} p $f(x, y, z)dzdydx$ = five other orders

Definition 6: $\int \int$ E $f(x, y, z)dV = \int$ D [$\int\limits_0^{u_2(x,y)}$ $u_1(x,y)$ $f(x, y, z)dz]dA$ **Definition 7:** If porjection D of E onto xy − plane of type 1: $\int \int$ E $f(x, y, z)dV = \int_a^b$ a \int $g_1(x)$ $\int\limits_0^{u_2(x,y)}$ $u_1(x,y)$ $f(x, y, z)dzdydx$ **Definition 8:** If projection D of E onto xy − plane of type 2: $\int \int$ E $f(x, y, z)dV = \int_a^d$ c $\int_{0}^{h_2(y)}$ $h_1(y)$ $\int\limits_0^{u_2(x,y)}$ $u_1(x,y)$ $f(x, y, z)dzdxdy$ The second part of this paragraph is about applications.

Example:

W is a graph like a icecream cone. W = region above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $z = \sqrt{1 - x^2 - y^2}$ $\int \int$ W $f(x, y, z)dV = \int$ D $\sqrt{1-x^2-y^2}$ \int dzdA Boundary of shadow D by $\sqrt{x^2 + y^2} = \sqrt{1 - x^2 - y^2} \Leftrightarrow x^2 + y^2 = 1 - x^2 - y^2$ so D is disk of radius $\frac{1}{\sqrt{x^2 + y^2}} = \sqrt{1 - x^2 - y^2} \Leftrightarrow x^2 + y^2 = 1 - x^2 - y^2$ $\overline{2}$ $\frac{1}{\sqrt{2}}$ $-\frac{1}{\sqrt{2}}$ $\sqrt{\frac{1}{2} - x^2}$ $\sqrt{2}$ $-\sqrt{\frac{1}{2}-x^2}$ $\sqrt{1-x^2-y^2}$ $\int \frac{f}{\sqrt{x^2+y^2}}$ $f(x, y, z)dzdydx$

Other types of coordinates:

Corresponding integrals:

15.7:Definition 4:

 $\int \int$ E $f(X, y, z)dV =$ \int α $\overset{h_2(\theta)}{\int}$ $h_1(\theta)$ $u_2(r\cos(\theta),r\sin(\theta))$ $u_1(r\cos(\theta),r\sin(\theta))$ $f(r \cos \theta, r \sin \theta, z) r dz dr d\theta$ Where $D = \{(r\theta) | \alpha \leq \theta \leq \beta, h_1(\theta) \leq r \leq h_2(\theta) \}$ and $E = \{(x, y, z) | (x, y) \in D, u_1(x, y) \leq z \leq \theta \}$ $u_2(x, y)$

15.8:Definition $3 \int \int$ E $f(x, y, z)dV = \int_{0}^{d}$ c \int α \int_a^b a $f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi d\rho d\theta d\phi$ Where $E = \{(\rho, \theta, \phi) | a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}$

Lecture 11:

Change of variables: double integrals:

paragraph 15.9: Definition 1,2: \int a $f(x)dx = \int_{0}^{d}$ c $f(g(u))g'(u)du = \int_0^d$ c $f(x(u))\frac{dx}{du}du$ where $x = g(u)$ and $a = g(c)$ and $b = g(d)$ **Definition 7:** JACOBIAN of the transformation T given by $x = g(u, v)$ and $y = h(u, v)$ is: $\frac{\partial(x,y)}{\partial(uv)} =$ $\begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array}$ $= \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$ **Definition 9:** and after a lot of computations: If we have a map $T: D^* \to D$ (so from one map to

another map) and T bijective and C^1 Then $f: D \to \mathbb{R}$ integrable then substitution rule: \int D $f(x, y)dxdy = \int$ D^* $f(x(u, v), y(u, v))\Big|$ $\delta(x,y)$ $\frac{\delta(x,y)}{\delta(u,v)}\Big|dudv$

Example

 $T: (r\theta) \rightarrow (x(r,\theta), y(r,\theta)) = (r \cos(\theta), r \sin(\theta))$ Then $\frac{\delta(x,y)}{\delta(u,v)}=r$

So \int D $f(x, y)dxdy = \int$ D^* $f(r\cos(\theta), r\sin(\theta))r dr d\theta$

Change of variables: triple integrals:

When we have T one-to-one transformation maps region S in uvw space onto region R in xyz-space by: $x = g(u, v, w)$ and $y = h(u, v, w)$ and $z = k(u, v, w)$ then:

JACOBIAN:
$$
\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}
$$
 and **Definition 13:**
\n
$$
\int \int \int \int f(x,y,z) dx dy dz = \int \int \int \int f(x(u,v,w), y(u,v,w), z(u,v,w)) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| du dv dw
$$

Example:

 $x = \rho \sin(\phi) \cos(\theta)$ and $y = \rho \sin(\phi) \sin(\theta)$ and $z = \rho \cos(\phi)$ $\frac{\delta(x,y,z)}{\delta(\rho,\phi,\theta)} = \rho^2 \sin(\phi)$ So $\int \int$ W $f(x, y, z)dxdydz = \int \int$ W^* $f \rho^2 \sin \phi d\rho d\theta d\phi$

Vector calculus:

 16.1

Definition 1: VECTOR FIELDS: $D \subset \mathbb{R}^n$ and $F: D \mapsto \mathbb{R}^n$ then this function F is called a vector field. **Definition 2:** $E \subset \mathbb{R}^3$ then vector field on \mathbb{R}^3 is function **F** that assigns each $(x, y, z) \in E$ in threedimensional vector $\mathbf{F}(x, y, z)$

After this, there are a lot of examples.

GRADIENT VECTOR FIELD/CONSERVATION: $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$ if there exists $f: D \to \mathbb{R}$ s.t. $F = \nabla f$

So $\nabla f(x, y) = f_x(x, y)\mathbf{i} + f_y(x, y)\mathbf{j}$ in \mathbb{R}^2 In this case f is called POTENTIAL FUNCTION for F

Line integrals:

16.2: **Definition 1:** We start with C given by $x = x(t)$, $y = y(t)$ where $a \le t \le b$ SMOOTH CURVE: C smooth curve in \mathbb{R}^n with parameter $\mathbf{r} : [a, b] \to \mathbb{R}^n$ and $t \mapsto \mathbf{r}(t)$ With $\mathbf{r}'(t) \neq 0$ for all $t \in [a, b]$ Then length of C given by $L = \int_{0}^{b}$ a $\|\mathbf{r}'(t)\|dt = \int_0^L$ 0 ds Where S is called the arclength, where $\frac{ds}{dt} = ||\mathbf{r}'(t)||$

$$
\operatorname{So} s(t) = \int_{a}^{t} \|\mathbf{r}'(\tau)\|d\tau
$$

Definition 2: if f smooth curve C then the line integral of f along C is \int $\int_C f(x, y)ds = \lim_{n \to \infty} f(x_i^{\star}, y_i^{\star}) \Delta s_i$ if the limit exist. (w.r.t arclength)

Definition $3:$ c $f(x, y)ds = \int_{0}^{b}$ a $f(x(t), y(t))\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}dt$

C is called piecewise smooth iff C is an union of finitely many smooth curves C_i where $i = 1, \ldots, n$ s.t. the initial point of C_i equals the endpoint of C_{i-1} where $i = 2, \ldots, n$

Then \int $\mathcal{C}_{0}^{(n)}$ $f ds := \sum_{n=1}^n$ $i=1$ $\sqrt{2}$ C_i $f ds$

Definition 7a line integral w.r.t x \int c $f(x, y)dx = \int_{0}^{b}$ a $f(x(t), y(t))x'(t)dt$

Definition 7b line integral w.r.t y $\int f(x, y) dy = \int_{a}^{b} f(x(t), y(t))y'(t) dt$

Definition 8: When we have a line that starts at \mathbf{r}_0 and \mathbf{r}_1 then we have $\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1$ where $0 \leq$ $t < 1$

Definition 9: LINE INTEGRALS IN SPACE: c $f(x, y, z)ds = \int_a^b$ a $f(x(t), y(t), z(t))\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 + (\frac{dz}{dt})^2}dt$

Lecture 12:

Line integrals

Definition 13: F continuous vector field, defined smooth curve C given by $\mathbf{r}(t)$, $a \le t \le b$. Then LINE integral of F along C: \int_a^b a $F(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{0}^{L}$ 0 $F \cdot T ds$ When $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ we have: R $\mathcal{C}_{0}^{(n)}$ $\mathbf{F} \cdot d\mathbf{r} = \int$ $\mathcal{C}_{0}^{(n)}$ $Pdx + Qdy + Rdz$

Example:

F force field, then the line integral of F along the curve C is the work required to move a particle along C

$$
\mathbf{r}:[0,1] \to \mathbb{R}^{3}
$$

\n
$$
F(x,y,z) = x^{3}\mathbf{i} + y^{2}\mathbf{j} + z\mathbf{k}
$$

\n
$$
\int_{C} F d\mathbf{r} = \int_{0}^{1} F(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{0}^{1} (t^{3}\mathbf{i} + (3t^{2})^{2}\mathbf{j} + 2t^{3}\mathbf{k}) \cdot (\mathbf{i} + 6t\mathbf{j} + 6t^{2}\mathbf{k}) dt = \int_{0}^{1} (t^{3} + 54t^{5} + 12t^{4}) dt = \frac{1}{4} + 11 = 11\frac{1}{4}
$$

Orientation of a curve:

16.3: **Theorem 1:** $\int F'(x)dx = F(b) - F(a)$ (part 2 of fundamental theorem of caluclus) **Theorem 2:** \overline{C} smooth curve given by $\mathbf{r}(t)$ where $a \leq t \leq b$ then: R $\mathcal{C}_{0}^{(n)}$ $\nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$ **Theorem 3: F** \cdot dr independent of path in D iff \int $\mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path in C

$\mathcal{C}_{0}^{(n)}$ Theorem 4: Fundamental theorem of line integrals:

Suppose **F** continuous open connected D. If \int C $\mathbf{F} \cdot d\mathbf{r}$ independent of path in D then \mathbb{F} —, conservative vector field on D that is, there exists a function f s.t. $\nabla f = \mathbf{F}$

PROOF:

Let $f(x, y) =$ \int (a,b) after few computation we see that $\frac{\partial}{\partial x} f(x, y) = 0 + \frac{\partial}{\partial x} \mathbf{F} \cdot d\mathbf{r}$ If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ we see that \int C_{2} $\mathbf{F} \cdot d\mathbf{r} = \int$ C_{2} $Pdx + Qdy$ then $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} = \nabla f$ (for full proof see page 1147)

Lecture 13:

Theorem 5:

F continuous vector field. F independent of path \Leftrightarrow $\oint F \cdot d\mathbf{r} = 0$ for all closed curves C \oint stands for the integral on a closed curve.

PROOF:

⇒

Let C be closed curve. Then we have \oint C $F \cdot d\mathbf{r} = \int$ $c₁$ $F \cdot d\mathbf{r} + \int$ $c₂$ $F \cdot d\mathbf{r} =$ $-C_1$ $F \cdot d\mathbf{r} + \int$ $C₂$ $F \cdot d\mathbf{r} = 0$ As $-C_1$ and C_2 have the same initial and final points and F is independent of path.

⇐ Let C be the closed curve which is union of C_1 and C_2 $0 = \int$ $\mathcal{C}_{0}^{(n)}$ $F \cdot d\mathbf{r} = \int$ C_1 $F \cdot d\mathbf{r} + \int$ $-C_2$ $F \cdot d\mathbf{r} = \int$ C_1 $F \cdot d\mathbf{r} - \int$ C_{2} $F \cdot d\mathbf{r}$ So \int $F \cdot d\mathbf{r} = \int$ $F \cdot d\mathbf{r}$ which is exactly what we wanted to show.

C_1 Definition:

A domain is called SIMPLY CONNECTED if it is connected and all closed curves in D can be contracted to a point.

Theorem 6:

Let $F = P\mathbf{i} + Q\mathbf{j}$ be a factor field on simply connected domain $D \in \mathbb{R}^2$ with $P \& Q$ being C^1 Then $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \Leftrightarrow F$ is conservative. Paragraph 16.4:

Green's theorem:

 C_{2}

Let D bounded domain in \mathbb{R}^2 with boundary Notation: ∂D consist of finitely many simple chose piecewise C^1 curves

Orient ∂D s that D is on the left as one traverses ∂D

Let $F = P\mathbf{i} + Q\mathbf{j}$ be a C^1 Vector field on D Then \oint ∂D $Pdx + Qdy = \int$ D $\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA$ Relates line integrals to double integrals. LHS might help to compute RHS or vica versa. PROOF: There is a really long proof in the book

Theorem 5: The Green's Theorem gives the following formulas for the area of D:

$$
A = \oint_C x dy = -\oint_C y dx = \frac{1}{2} \oint_C x dy - y dx
$$

Curl and divergence

Paragraph 16.5:

Definition 1: CURL: curl $\mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\operatorname{partializ}}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$ Remember: $\nabla = \mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}$
Definition 2: curl $\mathbf{F} = \nabla \times \mathbf{F}$

Theorem 3: if f function 3 variables, continuous second order partial derivatives then curl(∇f) = 0 PROOF:

$$
\text{curl}(\nabla f) = \nabla \times (\nabla f) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{vmatrix} = \left(\frac{\partial^2 f}{\partial y \partial z} - \frac{\partial^2 f}{\partial z \partial y} \right) \mathbf{i} + \left(\frac{\partial^2 f}{\partial z \partial x} - \frac{\partial^2 f}{\partial x \partial z} \right) \mathbf{j} + \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right) \mathbf{k} =
$$

 $0i + 0j + 0k = 0$

Definition 9: div $\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ where div \mathbf{F} stands for the diverengence of **F** Definition 10: $div \mathbf{F} = \overline{\nabla} \cdot \mathbf{F}$

Theorem 11: if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ vector field on \mathbb{R}^3 and P, Q, R continuous second order partial derivatives, then div curl $\mathbf{F} = 0$

PROOF:

use div curl
$$
\mathbf{F} = \nabla \cdot (\nabla \times \mathbf{F})
$$

LAPLACE OPERATOR: $\nabla^2 = \nabla \cdot \nabla$ name comes from relation to LAPLACE'S EQUATION: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2}$ $\frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$

Definition 12: Rewrite Green's theorem in vector form: \oint C $\mathbf{F} \cdot d\mathbf{r} = \oint$ C $\mathbf{F} \cdot \mathbf{T} ds = \int$ D $(Curl F) \cdot k dA$

Definition 13: or: \oint C $\mathbf{F} \cdot \mathbf{n} ds = \int$ D $\operatorname{div} \mathbf{F}(x, y) dA$ where $\mathbf{n}(t) = \frac{y'(t)}{\mathbf{F}'(t)}$ $\frac{y'(t)}{|\mathbf{r}'(t)|}\mathbf{i} - \frac{x'(t)}{|\mathbf{r}'(t)|}$ $\frac{x(t)}{|\mathbf{r}'(t)|}$ j

Lecture 14:

16.6:

Let r vector function of two parameters definition $1:$ so $\mathbf{r}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$ **Definition 2:** PARAMETERIC EQUATIONS: $x = x(u, v), y = y(u, v)$ and $z = z(u, v)$ D is the region in the uv - plane where $\mathbf{r}(u, v)$ is defined. PARAMETERIC SURFACE: the set of all points (x, y, z) in \mathbb{R}^3 that satisfies the second definition and where (u, v) varies throughout D GRID CURVE: a curve of $r(u, v)$ where we have on of the parameters as a constant.

SURFACE OF REVOLUTION: surface that exists by rotating the curve $u = f(x)$ where $a \le x \le b$ about the x− axis, where $f(x) \geq 0$ If (x, y, z) a point on this surface S then:

Definition 3: $x = x, y = f(x) \cos(\theta)$ and $z = f(x) \sin(\theta)$ where θ the angle of rotation. So domain is equal to: $a \leq x \leq b$ and $0 \leq \theta \leq 2\pi$ Tangent plane:

The partial derivatives of $\mathbf{r}(u, v)$: $\textbf{Definition 4:}\ \textbf{r}_{v}=\frac{\partial x}{\partial v}(u_0,v_0)\textbf{i}+\frac{\partial y}{\partial v}(u_0,v_0)\textbf{j}+\frac{\partial z}{\partial v}(u_0,v_0)\textbf{k}$ $\textbf{Definition 5:}\ \textbf{r}_u=\frac{\partial x}{\partial u}(u_0,v_0)\textbf{i}+\frac{\partial y}{\partial u}(u_0,v_0)\textbf{j}+\frac{\partial z}{\partial u}(u_0,v_0)\textbf{k}$ if $\mathbf{r}_u \times \mathbf{r}_v$ $neq0$ for all values, then the surface S is SMOOTH TANGENT PLANE: contains $\mathbf{r}_u \& \mathbf{r}_v$ and the vector $\mathbf{r}_u \& \mathbf{r}_v$ are normal vector to the tangent plane.

Definition 6: S smooth curve, given by $\mathbf{r}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$ where $(u, v) \in D$ S covered just once (u, v) through domain D then SURFACE AREA: $A(S) = \int \int |\mathbf{r}_u \times \mathbf{r}_v| dA$ where $\mathbf{r}_u \& \mathbf{r}_v$ like above. D

Special case:

 $x = x$ and $y = y$ and $z = f(x, y)$ then $\mathbf{r}_x = \mathbf{i} + (\frac{\partial f}{\partial x})\mathbf{k}$ and $\mathbf{r}_y = \mathbf{j} + (\frac{\partial f}{\partial y})\mathbf{k}$ then Definition $7: \mathbf{r}_x \times \mathbf{r}_y =$ $\begin{vmatrix} 0 & 1 & \overline{\partial y} \end{vmatrix}$ i j k $\begin{array}{ccc} 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{array}$ $=-\frac{\partial f}{\partial x}\mathbf{i}-\frac{\partial f}{\partial y}\mathbf{j}+\mathbf{k}$ So **Definition 8:** $|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2 + 1} = \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2}$ **Definition 9:** so the surface area formula will become: $A(S) = \int$ D $\sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2}dA$

Surface integrals:

16.7: **Definition 1:** SURFACE INTEGRAL OF f OVER THE SURFACE S by the riemann sum: $\int \int Sf(x, y, z)dS$ $\lim_{m,n\to\infty} f(P_{ij}^{\star})\Delta S_{ij}$

Definition 2:
$$
\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA
$$

Definition 4:
$$
\iint_S f(x, y, z) dS = \iint_D f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} dA
$$

Oriented surface:

Two unit normal vectors n_1 and n_2 where $n_2 = -n_1$

ORIENTED SURFACE: if it is possibl eot choose **n** at every (x, y, z) s.t., **n** varies continuously over S. When we choose such an n , it gives S ORIENTATION.

Definition 5: for a surface $z = g(x, y)$ we can say that: $\mathbf{n} = \frac{-\frac{\partial g}{\partial x} \mathbf{i} - \frac{\partial g}{\partial y} \mathbf{j} + \mathbf{k}}{\sqrt{\frac{\partial g}{\partial y} \mathbf{i} - \frac{\partial g}{\partial z} \mathbf{j}}$ $\sqrt{1+(\frac{\partial g}{\partial x})^2+(\frac{\partial g}{\partial y})^2}$ $k > 0$ so upward orientation. If S smooth then $n = \frac{\mathbf{r}_u \times \mathbf{r}_v}{|\mathbf{r}_u \times \mathbf{r}_v|}$

Flux:

Let **n** normal vector $\rho(x, y, z)$ destiny and $\mathbf{v}(x, y, z)$ velocity field then the rate of flow per unit is given by ρv

If we divide S into small paches S_{ij} we obtain that the mass of fluid per unit time crossing S_{ij} in the direction of **n** is equal to: $(\rho \mathbf{v} \cdot \mathbf{n})A(S_{ii})$

So therefore we know after some steps that:

Definition 6: \int \int S $\rho \mathbf{v} \cdot \mathbf{n} dS = \int$ S $\rho(x,y,z){\bf v}(x,y,z)\cdot{\bf n}(x,y,z)dS$ If we write $\mathbf{F} = \rho \mathbf{v}$ we obtain $\int \int$ $\mathbf{F} \cdot \mathbf{n} dS$

S **Definition 8:** F cont.vector field defined on S with unit normal vector **n** then the SURFACE INTEGRAL OF **over** S **is equal to:**

 \int S $\mathbf{F} \cdot d\mathbf{S} = \int$ S $\mathbf{F} \cdot \mathbf{n} dS$ This integral is also called FLUX of \mathbf{F} across S

Definition 9: \int \int S $\mathbf{F} \cdot d\mathbf{S} =$ D $\int \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA$

This assumes that orientation induced by $\mathbf{r}_u \times \mathbf{r}_v$. Opposite orientation?Multiply with -1

If we use $z = g(x, y)$ we see that: Definition 9: $\mathbf{F} \cdot (\mathbf{r}_x \times \mathbf{r}_y) = (P) + Q\mathbf{j} + R\mathbf{k} \cdot (-\frac{\partial g}{\partial x}\mathbf{i} - \frac{\partial g}{\partial y}\mathbf{i} + \mathbf{k})$ So then definition 10: \int S $\mathbf{F} \cdot d\mathbf{S} = \int$ D $(-P\frac{\partial g}{\partial x} - Q\frac{\partial g}{\partial y} + R)dA$ upward orientation of S. otherwise multiply with -1

Application:

1: E is elictric field, then \int $\mathbf{E} \cdot d\mathbf{S}$ is ELECTRIX FLUX OF E THROUGH S.

S **Definition 10:** GAUSS'S LAW: $Q = \varepsilon_0 \int \int$ S $\mathbf{E} \cdot d\mathbf{S}$

Q is the net charge enclosed by a closed \tilde{S} , ε_0 is a constant(permittivity of free space)

2: $u(x, y, z)$ temperature body at (x, y, z) then heat flow: $\mathbf{F} = -K\nabla u K$ is constant called conductivity. Rate of heat flow across the surface S in the body: \int S $\mathbf{F} \cdot d\mathbf{S} = -K \int$ S $\nabla u \cdot d\mathbf{S}$

Lecture 15:

16.8:

POSITIVE ORIIENTATION OF THE BOUNDARY CURVE C if you "walk" in positive direction around C with head pointing direction n then surface will be on your left.

Stokes' theorem: S oriented piecewiese-smooth surface bounded by simple,closed,piecewise-smooth C with positive orientation.

F vector field, components has continuous partial derivatives on open region \mathbb{R}^3 and $S \in \mathbb{R}^3$ then: $\int \mathbf{F} \cdot d\mathbf{r} = \int \int \text{curl} \mathbf{F} \cdot d\mathbf{S}$

$$
\check{C} \qquad \check{S}
$$

Definition 1: $int \mid$ S curl $\mathbf{F} \cdot d\mathbf{S} =$ ∂S $\mathbf{F} \cdot d\mathbb{R}$

Where ∂S —, is the positvely oriented boundary curve of the oriented surface S

Definition 3: if S_1 and S_2 oriented surface, same oriented boundary curve C, both satisfy Stoke's theorem then:

$$
\int\int\limits_{S_1} \text{curl}\mathbf{F} \cdot d\mathbf{S} = \int\limits_{C} \mathbf{F} \cdot d\mathbf{r} = \int\int\limits_{S_2} \text{curl}\mathbf{F} \cdot d\mathbf{S}
$$

v: the velocity field in fluid flow.

The line integral $\int \mathbf{v} \cdot d\mathbf{r} > 0$ then positive circulation (and otherwise negative, obviously).

We see htat $\int \mathbf{v} \cdot d\mathbf{v}$ C_a $\mathbf{v} \cdot d\mathbf{r} = \int \int$ S_a curlv $dS = \int$ S_a curlv·nd $S \approx$ S_a curl**v** $(P_0) \cdot \mathbf{n}(P_0) dS = \text{curl} \mathbf{v}(P_0) \cdot \mathbf{n}(P_0) \pi a^2$ We see that $P_0(x_0, y_0, z_0)$ a point in the fluid, and S_a small disk with radius a and centered at P_0 whne $a \rightarrow 0$:

Definition 4: curl**v** $(P_0) \cdot \mathbf{n}(P_0) = \lim_{a \to 0} \frac{1}{\pi a^2} \int$ C_a $\mathbf{v} \cdot d\mathbf{r}$

The divergence theorem:

16.9:

Definition 1: \int \int S $\mathbf{F} \cdot \mathbf{n} dS = \int$ E $\int \text{div} \mathbf{F}(x, y, z) dV$

Divergence theorem: E simple solid region and S boundary surface E given wiht positive outward orientation.F vector field, with component functions continuous partial derivatives on open region $\operatorname{containing} E$

Then: \int S $\mathbf{F} \cdot d\mathbf{S} = \int \int$ E \int div $\mathbf{F}dV$

Assume a region E closed by the surace S_1 and S_2 where S_1 lies inside S_2

 $n_1\&n_2$ outward normals $S_1\&S_2$ then boundary surface of E is $S = S_1 \cup S_2$ and $n = -n_1$ on S_1 and $n =$ n_2 on S_2

Then we receive: Definition 7:

 \int E $\int div \mathbf{F} dV = \int$ S $\mathbf{F} \cdot d\mathbf{S} = \int$ S $\mathbf{F} \cdot \mathbf{n} dS = \int$ S_1 $\mathbf{F} \cdot (-\mathbf{n}_1)dS + \int$ $\scriptstyle S_2$ $\mathbf{F}\cdot\mathbf{n}_2dS=-\int$ S_1 $\int \mathbf{F} \cdot d\mathbf{S} +$ S_2 $\int \mathbf{F} \cdot d\mathbf{S}$

S

Application:

1:

We know that $\mathbf{E}(\mathbf{x}) = \frac{\varepsilon Q}{|\mathbf{x}|^3} \mathbf{x}$ where Q electric charge at origin, $\mathbf{x} = \langle x, y, z \rangle$ and E electric field. Then we see that the electirc flux through any closed S ecloses the origin is \int $\mathbf{E} \cdot d\mathbf{S} = 4\pi\varepsilon Q$

Definition 8: \int \int E $\int div \mathbf{E} dV = -\int$ S_1 $\mathbf{E} \cdot d\mathbf{S} + \int$ S $\mathbf{E} \cdot dS$ (like definition 3 of 16.8) And because we see that $div\mathbf{E} = 0$ we now that \int S $\mathbf{E} \cdot d\mathbf{S} = \int$ $S-1$ $\mathbf{E} \cdot d\mathbf{S}$

2:

When we have $\mathbf{F} = \rho \mathbf{v}$ so the rate of flow per unit area, $P_0(x_{0,0}, z_0)$ a point in the fluid, and B_0 ball with center P_0 and radius a then $div \mathbf{F}(P) \approx div \mathbf{F}(P_0)$ for all points in P in B_a since $div \mathbf{F}$ continuous.

Flux over the boundary sphere S_a : f f S_a $\mathbf{F} \cdot d\mathbf{S} = \int$ B_a $\int div \mathbf{F} dV \approx \int$ B_a $\int div \mathbf{F}(P_0) dV = div \mathbf{F}(P_0) V(B_a)$ When $a \to 0$ suggest **Definition 8:** $div \mathbf{F}(P_0) = \lim_{a \to 0} \frac{1}{V(B_a)} \int_{S_a}$ S_a $\mathbf{F} \cdot d\mathbb{S}$

 $div\mathbf{F}(P_0)$ net rate of outward flux per unit volume at P_0 (reason name divergence). If $div \mathbf{F}(P) > 0$: source if $div \mathbf{F}(P) < 0$: sink