Calculus 2, University of Groningen H.M. Goossens

Lecture 1

Definitions:

COORDINATE AXIS: z, Y, z— axis, perpendicular to eachother, through O
COORDINATE PLANES: 3 options:
(1) xzy—plane: (2) zz—plane: (3) yz—plane:

contains x— and y— axis. :containsz— and z— axis. contains y— and z— axis.
OCTANTS: the eight parts in space, divided by the coordinate planes.
FIRST OCTANT: determined by the positive axes.
Point P has the ordered triple (a, b, ¢) where COORDINATES «, b, ¢: a =x-coordinate,b =y-coordinate&c = z-
coordinate.
PROJECTION OF P: when projection on zz— plane,y— coordinate equals 0, works same way for yz— and xy— plane.
THREE-DIMENSIONAL RECTANGULAR COORDINATE SYSTEM: System where one-to-one correpson-
dence between a point and ordered triplets (a, b, c) € R?
SURFACE INR3: in 3d analytic geometry, an equation inz, v, z

DISPLACEMENT VECTOR V denoted by vor¢ the vector repreesents the movement along a line seg-
ment.

INITIAL POINT: tail of vector and TERMINAL POINT: the tip. Writev = AB

u = v EQUIVALENT OR EQUAL: same length, same direction, same possition not necessory.

ZERO VECTOR 0 length 0

AC = AB + AC

New formula’s

Distance formula in three dimensions: distance | P, Py| between P; (x1,y1, 21) and Pa(x2, Y2, 22) is:
|PiPs| = \/(z2 —21)2 + (y2 — y1)% + (22 — 21)?

Equation of a sphere: Equation sphere with center C'(h, k, 1) and radiusr:

(x—h)?+ (y— k)?z —1)?=r?

When center=0 then: z2 + y? + 22 = r?

Algebra vectors (1):

Definition of vector addition: u&v vectors possitioned s.t. initial point v = terminal point v then u+
v vector initial point uto terminal point v

Parallelogram Law:u+v =v +u

SCALER: a real number with which we multiply something. In this case a vector.

Definition scaler multiplication: ¢ scaler v vector then: (1) scaler multiple cv vector whose length || times
length of v

(a) Same direction asvifec > 0

(b) opposite ifc < 0

(c)e=0o0rv=0thencv =0

PARALLEL: two vectors if scaler multiples one another.

NEGATIVE of v same length asv opposite direction: —v = (—1)v

DIFFERENCEU — Vv =u+ (—V)
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Components:
R2 R3
terminal a @Qorigin, then coordinates called COMPONENTS:
<a1aa2> <a17a27a3>

REPRESENTATIONS: gives an image of a vector.
vector representation: A(z1,y1, 21) and B(x2, y2, 22) thenﬁ =a=(x—2—121,Y2 — 1,22 — 21)
POSITION VECTOR OF POINT P: O
Length of magnitude: v denoted by |v|or ||v| the length of any representations:

R? a = (ay,as) la| = /a3 + a3

R?® a=(aj,a2,a3) |a]=+/a?+a3+a3

Algebra vectors (2):

a = <C(,17 a2>&b = <b1, b2> then:
(—)aer: <a1+b1,a2+b2>
(—)a—b: <a1—b1,a2—b2>

(-) ca = {cay, cas)

a = (al,ag,a3>&b: <b17b2,b—3>
—)a+b: <a1—|—b1,a2+b2,a3+b3>
—)a—b: <a1—b1,a2—b2,a3—b3>
-) ca = {cay, cag, cas)

Py

Properties of vectors: a, b, cvectors in V,, and «, 8 scalers:
a+b=b+a a+(b+c)=(a+b)+c

a+0=a a+(—-a)=0
ala+b)=aa+ab (e +pPla=aa+ Pa
(af)a = a(fa) la=a
Definitions:

STANDARD BASIS VECTORS: i, j, k wherei = (1,0,0),j = (0,1,0) and k = (0,0, 1)
Ifa = (a1, as) thena = a1i + asj Ifa = (a1, as, a3) thena = a1i+ asj + azk
UNIT VECTOR: vector length 1. For examplei, j&k

ifa # 0 then unit vector same direction asais:u = I%

applications:

RESULTANT FORCE: the sum of the forces experienced by the object.
Example: 100-1b weight. Find T1&T5 and the magnitudes.

e

w

From this figure, we see that:

T, = —|T1]|cos(50°)i + | T1|sin(50°)j

Ty = —|T2| cos(32°)i + | T2 |sin(32°)j

T1 + TQ =W = *100j

After some algebra we find that | T - and |Tq| = %7;?8:8@

sin 50° +tan 32° cos 50°
And Ty ~ —55.06i + 65.60j& T2 ~ 55.05i + 34.40j
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Dot product:

DEFINITION: a = {aj, ag, az)&b = (b1, b2, b3) then DOT PRODUCT
(—) a-b =aiby + asby + asbs
(-) (a1, a2) - {b1,b2) = a1by + azb+2
SCALER PRODUCT (OR INNER PRODUCT) other name dot product becausea-b € R
Properties dot product: a.b&c € V3 and ascaler then:
(a-a=|al? (2)a-b=b-a (3)a-(b+c)=a-b+a-c
(4) (ca) -b=a(a-b)=a- (ab) (5)0-a=0
ANGLE § BETWEEN THE VECTORS 0&b starts at the origin where 0 < 6 < 7, ifa&b parallel then § =
Oorf =m
Theorem: § angle between vectorsa&bthena - b = |a||b| cos(§)
PROOF:

|AB|* = |OA]* + |OB|* — 2|0 A||OB| cos(6)

Because |OA| = |a|,|OB| = |b]and |AB| = |a — b|

= |a—b|*> = |a]> + |b|* — 2|a|b]| cos(f)

using the given properties, we can conclude the theorem.
a-b

Corollary: cos(8) = Tallb]

PERPENDICALOR OR ORTHOGONAL: if angle between the vectors isf) — 5 so whena-b =0

Direction angles and direction cosines:

DIRECTION ANGLES: o, 3, in above figure. (angle thata makes with the positive z—, y—, z— axes.)
DIRECTION COSINES: the cosine of the direction angles:

(-) cos(@) = iy = faf

() cos f =
(eosy =
Bu squaring we see that cos? a+cos? B+cos? v = 1soa = (|a| cos a, |a| cos 3, |a| cosy) = |a|{cos a, cos 3, cos v}

S0 éa = (cos a, cos 3, cos )

Projections:

SCALER PROJECTION OF VECTOR B ONTO VECTOR A: comp,b = 2
VECTOR PROJECTION OF VECTOR B ONTO VECTOR A:comp,b = (2P)2 — %a
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Applications:

F o
D

CONCSTANT FORCE VECTOR: F

DISPLACEMENT VECTOR: D

WORK: product of component of hte force along D and the distance moved.
W = (|F|cos(0)|D| = |F||D|cos(§) =F - D

Cross product:

CROSS PRODUCT: a = (al, as, a3>&b = <b1, b2, b3>, thenaxb = <a2b3 — agbg, a3b1 — albg, aibs — (l2b1>
Only when a&b three dimensional vectors.

DETERMINANT ORDER 2: ‘Z Z = ad — be
a; Qa2 as
DETERMINANT OF ORDER 3: |by by bg| = ay ba b3| _ 9 b s + as b by
C2 C3 c1 C3 c1  C2
C1 C2 C3
So ifa = a1i+ asj + askand b = b1i + b3j + bsk then we can say that:
i j k
a><b=a2 a3.—a1 a3j+a1 a2k: a1 a2 as
by b3 by b3 b1 bo
by by b3
Orthogonal: The vectora x bis orthogonal to a&b
PROOF:
Just 1 part:
(axb)-a: a2 as a1 — a1 as -a2—|— a1 a2 ~as :al(agbg—agbg)—ag(albg—agbl)—f—ag(ale—
b2 b3 b1 b3 bl bg

asb1) = 0 so orthogonal.

angle between vectors and cross product: |a X b| = |a||b|sin(§)
PROOF:

|a X b|2 = (CLgbg — a3b2)2 + (a3b1 — a1b3)2 + (albg — a2b1)2 = (CL% +CL§ + a%) + (b% + b% + b%) - (albl +
a2b2 + a3b3+2

= [a*[b|]* - (a-b)? = |a]*|b[* — |a|*|b|* cos?

— [af*[b|*(1 — cos?(6)

|al”[b|” sin®(9)

Take the square root of both sides and you see the result like in the theorem.
PARALLEL:ax b =0

LENGTH CROSS PRODUCT a X bequal to the area determined by a&b

Algebra cross products:

For the standard basis vectors:
ixj=k jxk=i kxi=]
jxi=-k kxj=-i ixk=-j
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Fora, b, c vectors and scaler a:
()axb=-bxa (2) (wa) x b =a(a xb)=ax (ab)
(3)ax(b+c)=axb+axc (4)(a+b)xc=axc+bxc
(5)a-(bxc)=(axb)-c (6)ax (bxc)=(a-c)b—(a-b)c

Triple product:

ay az as
TRIPLE PRODUCT:a- (b x ¢) =|by by b3
1 C2 C3

VOLUME PARALLELEPIPED: determined by a,b,c:V = |a- (b x c|

Lines:

TRIANGLE LAW FOR VECTOR ADDITION:T =TIy + a

Since a& v parallel, exists scalerts.t.a =tvso:r =rg + tv

Where this last equation is called VECTOR EQUATION OF L

PARAMETER: ¢ gives position vectorr

r can also be written asr = (z,y, z)

When tv = (ta, tb, tc) and rg = (o, yo, 20) then: (x,y, 2) = (xg + ta,yo + tb, 2o + tc)
PARAMETIC EQUATIONS:

(-)x=x0+at
(-)y =wyo +0t
(F)z=2z0+ct

wheret € R and L through P(zg, yo0,20) and parallel to (a, b, ¢)
Each value oft gives a point on L

a, b, care called direction numbers of L
SUMMETRIC EQUATIONS: #—%0 = Y240 = =20
LINE SEGEMENT from r( tor; given by:

r(t) = (1 —t)ro + try where0 < ¢ <1

SKEW LINES: lines that doe no intersect.
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Planes:

NORMAL VECTORN orthogonal to the plane.

Let P(x,y, z) arbitrary plane andrg,r position vectors of Py and P thenr —ry = 1353

We see then thatn - (r—rg) =0 n-r=n-rg

These equations are calleed the vector equation of the plane.

SCALER EQUATION OF THE PLANE trough Py(zg, yo, 20) withn = (a, b, ¢)is:a(x — z¢) + b(y — yo) +
c(z—20)=0

Then we can write this plane to:ax + by +cz+d =0

Where LINEAR EQUATION IN z,y, 2: d = —(axg + byo + ¢20)

|laz1+byi+cz1+d|

DISTANCE D FROM THE POINT P (21,41, 21) TO THE PLAINE az+by+cz+d = 0: D = s
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Lecture 2

3 dimensional planes:

TRACES: curves intersection surface with planes | coordinate plane.RULLINGS: lines in a surface

QUADRIC SURFACE: second degree equations in 3 variables z, y, z and with constants: 4, ..., J

General form: Az?2 + By? + C22 4+ Day+ Eyz+ Foz+Ge + Hy+ 12+ J =0
Standard form 1: Az2 + By? 4+ C2% 4+ J = 0Standard form 2: Az?2 + By? +Cz+3j =0

Name Definition Formula Image
CYLINDER surface that consist rullings
Parallel given line,through a given plane
2
CONE Horizontal traces ellipses (Zj; = 5—2 + 4%
Vertical tracesz = kand y = k hyperbolas
if k # 0 otherwise pairs of lines
PARABOLIC made of inf. many shifted
CYLINDER copies parabola
2 2 2
ELLIPSOID Traces are ellipses L+ +5=1
a = b= c? Sphere
2 2
EvrvLipTIC Horizontal traces ellipses 2=z 44
) . c a b
PARABOLOID Verticle traces parabolas variable to first power
indicate axis parabaloid
2
HYPERBOLIC Horizontal traces parabolas 2 =4 - i—i case wherec < 0
PARABOLOID Vertical traces parabolas
2 2 2
HYPERBOLOID Horizontal traces ellipses . -y |
. P a b c
OF ONE SHEET: Vertical traces hyperbolas
negative variable is axis symmetry
2 2 2
HyPERBOLOID | Horizontal in z = kellipsesifk > cork < —c -t 5 =1

OF TWO SHEETS

Vertical traces hyperbolas
two minus signs: two sheets
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Vector functions:

VECTOR FUNCTIONS: maps R toR™

COMPONENT FUNCTIONS: I C R and: I — R"andt — (r1(t),...,ra(t))
Ezample: n = 3thenr(t) = (g(t), h(t), k(1))

Definition 1:

Ifr(t) = (f(t0 < g(t), H(t)) then lim r(t) =) lim f(t), lim g(2), lim h(#))
Provides, limits of component functions exists.

PRrROOF:

vecall £(t) = £1(8),9(t) = fo(t) and A(t) = fo(1)

0<|t—a| <A=|r(t) L] <e

36; > 0s.t.0 < |t—a| <6 = |fl(t) — Li‘ < %fori =1,2,3

3
Set 6 = min{d;}so then||r(t) — L|| =4/ > (fi(¢) — L;)? < % + % + % =c
i=1

M=

Distance vectors: u, v € R" defined by |jlu — v|| = (u; — v;)?

1
t) =r(a)
SPACE CURVE: C' = r(I) whereI C Rinterval andr : I — R3 wherer the PARIMACTERISATION OF C'

New spaces in this chapter without explanations:
Helix, toroidal spiral (lies on torus), trefoil knot, twisted cube

—~

CoNTINUOUS: T : I — R" continuousata € Iiflimr
t
—a
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Lecture 3:

Definition 1:

DERIVATIVET' (t) defined as % =r'(t) = lim

r(t+h)—r(t)
h—0 h

Remarks:

Or’(t) =tangent vector of the curve C' = r(I) at the point r(¢t) wheret € T
O UNIT TANGENT VECTOR T(t) = % as long asr/(t) # 0

Theorem 2:
() = (£(), (1), h(t
r'(t) = (f'(t),q'(t), h
Remarks:

Osecond derivative also possible:r” (¢) = (r'(¢))’
Theorem 3:

u, v are vectors, cis a scaler and f real valued function:

) = f()i+ g(t)j + h(t)k where f, g, h differentiable:
/
t

() = f'(Di+g' )]+ h (t)k

1 % [u(t) + v(t)] =u'(t)+Vv'(t)

2 = [cu(t)] =cu'(t)

3 % [f(t)u(?)] = f(t)a(t) + f(O)u'(t)

4 & @) -v)]  =d)-vt)+ul) v(t)
5 % [u(t) x v(t)] =u'(t) x v(t) +u(t) x v'(t)
6 & [u(f@)] = [’ (f(1))

Integrability,arclength and reparemeterization:

INTEGRABILITY: vector function integrable on interval I < components integrable on I
b b b b
Jr@)dt = (] f®)d)i+ ([ g()dt)j + ([ h(t)dt)k

I = [a,b]andr : I — R3 continous differentiable s.t.r’(t) exists. Thenris of class C*

We know that the length of a vector function S; is given by: AS; = ||r(t;) — r(t;—1)||
Where Az; = f(t:) — f(ti—1) and Ay; = g(t;) — g(ti—1) and Az; = h(t;) — h(ti—1)
SoAS; = \/AZ? + Ay? + AZ?

ARCLENGTH OFC' =r(I): lim Z AS;

max At; —0

Theorem 1 R? L= f VIF @) '(t))%dt :fb (%)% + (%)th

b
Theorem 2 R® L= f\/[f’(t)]2 +lg@P + [ @)Pdt = f\/(d%”)2 + ()2 + (52t
We can rewrite this all to L = f |r’(t)|dt Theorem 3

Ifr(t) = f(t)i(t) + g(t)j + h(t)k wherea < t < bandr(t)is at least of class C! then:

t t
Theorem 6,7:ARC LENGTH FUNCTION: s(t) = [ [r/(u)|du = [ \/(g—i)g + ()2 4 (22)24y so then

we see that 25 = [r/(t)
PARAMETERIZE A CURVE W.R.T. ITS ARC LENGTH: usefull method. Set the arc length equal to a
function s(t) and subsitutet = s(t) in the original vector function.
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Example:

A single curve can be represented by more then 1 vector function. For example:
theorem 4: (1)ry(t) = (t,t%,t3) where1 <t < 2

theorem 5: (2) ra(u) = (e*, e?“, %) where 0 < u < In(2)

Gives exactly the same graph

Independent length:
Lenght of curve C" does not depend on the parameterization in the following sense:

fH jdt = fH 2 lldu

h : a,b] — [c d)C" and bijective. sot — u = h(t)s.t.r(t) = r(h(t))
Proor:

b g9(b)
recall substitution rule integrals. [ f(g(z))¢'(x)dz = [ f(u)du
a g(a)

~ b
G e = 1 ey - oy

b J b
[ 4 ldt = |

b J 17 @) @)t > 0 o
= [IF )l @t =, = 4 () = d
' f 17 (R IR (B)]dt, < O

Because when first casea — cand b— dso thenr =71
Second casea — dand b — ¢so thenr — —r
Note:

One natural parameterization of a curve is parameterization by arclength: s( f |Ix’ (¢
of the position of the curve ¢ between the pointsr(a) and r(t)

s(t) resp. corresponds to h(t) resp. to w in proposition above. Thenc = 0andd = L
Remarks:

@ =@l

in phyiscs: % corresponds to the norm of the velocity vector, which we call speed.

)||dt =length
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Lecture 4:

Curvature:

SMOOTH CURVEIf the curve has aSMOOTH PARAMETERIZATION: 1’ (t) is continuous and r’(t) # 0
Recall: Unit tangent: Indicates direction of curve: T'(¢) = I::Egl

Definition 8: CURVATURE: The rate of change of unit tangent vector w.r.t. arc length. curve of
class C2 where k = |4 |

Theorem 9 and 10 when we substitute % = [r/(t)| and after that fill in the formula for the unit

tangent vector we find x(t) = |‘T/((;))‘| _ I (‘?/(Xt;‘z(t”
[f7 ()]

Theorem 11: when we have the curvaturey = f(x) thenx(x) = )T

Moving frames and torsion:

Let C : r: I — R3of class C3then we can find 4 mutually orthogonal vectors of length 1 at each
point of C'

UNIT TANGENT VECTOR: T(r) = oyt (1)

(PRINCIPAL) UNIT NORMAL (VECTOR): direction in which the curve is turning at each point. N(¢) =
T (t)

T (2

]|3H\(Ié‘RMAL VECTOR: perpendicular to T and N defined by B(t) = N(¢) x T(¢)

NORMAL PLANE: the blane determine by N and B at a point Pon a curve C

OSCULATING PLANE: The plane determined by T and N of C at a point P

OSCULATING CIRCLE/CIRCLE OF CURVATURE: circle lies in oscolating plane, same tangetn at C at P
on the side on towards N points, and has radius p = %

TORSION: (7) which we can find by Definition 137 = —2BN = —7N measures how spatial (non
planair) a curve is.
,or Definition 12: % =—7N
Definition 14: 7(t) = 7%
It can be shown that: % = kN and % = —7N but % =—xT+7B
T 0 Kk 0 T
So|N'|=-« 0 7 N | which is called the Frenet-serret equations.
B’ 0 —7 0 B

[/ (t)xx” (1)]-r'” (¢)

TORSION OF A CURVE BY THE VECTOR FUNCTION: Theorem 15:7(t) = e (O]

Example:

r:[—1,1] = R?sot — (t3,1*)soy = z givest? = t*sot = V13

r(t) = acos(t)i+ asin(t)j + btk wherea,b > 0
t

_ 1 / _ —asin(t)i+acos(t)j+bk
T(t) = e’ (t) = eI
—a cos(t)i—asin(t)j
_ 1 _ Va2+b2 o . . .
N(t) = W’I”(t) = Tj::z = — COS(t)l — Sln(t)J
Tl
lIlx’ ()] a®+b?

The curvuture of a circle is given by % where r =radius.

B =T x N = (777 sin(t)i — (g cos(t)i + 7k
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Note: 4B = (ﬁ cos(t))i+ (ﬁ sin(t))j

So we see that this vector is parallel to N

Application: linear approximation:

r: I C R — R"*different att¢ € I so:

Jv € R"s.t. lim "“L})l_r(t) —v
h—0

< Jdv € R"s.t. lim rn)=r®) _
T—0

T—1

& Jv € R7s.t. lim w =0
T—t

T

< r(t) + v(r —t) the linear approximation of the functionr at r(t)

L(1) =r(t) + v(T — t) so the linearisation ofr
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Lecture 5:

functions:

Definitionlet (x,y) — f(z,y) Then:

DOMAIN: (z,y) € D then D domain.

RANGE: {f)z,y)[(z,y) € D}

When we have z = f(z,y) then 2, y INDEPENDENT VARIABLES and z DEPENDENT VARIABLES.
GRAPH: if f function two variables with domain D then GRAPHset of all points (z,y, z) € R3s.t. 2 =
f(z,y)and (z,y) € D

LEVEL CURVES: f two variables are the curves with equations f(x,y) = k where k constant in range f
CONTOUR/LEVEL MAP: collection of level curves.

FUNCTION OF 3 VARIABLES: ordered triple (z,y,2) € D C R®where D domain assings to a unique
real number f(z,y, 2)

HALF-SPACE CONSISTING ALL POINTS ABOVE PLANE, z = y: D = {(z,y, 2) € R3|z > y}

LEVEL SURFACES: surfacess.t. f(z,y, z) = k where k a constant.

Example:

A company usesn different ingedients in making a food product, wherec; is the cost per unit of
theith ingredient, you need x; units of the ith ingredient, then the total cost:

C=f(x1,...,zn) =121+ ...+ cran

We can rewrite this to f(x) =c-x

There are three ways of looking at a function f defined on subset R™:

(1) function real variablesxy, ..., x, (2)function single point variable (z1,...,z,)

(3) function single vector variablex = (z1,...,2,)

Limits and continuous

Definition 1: f function 2 variables, domain D includes points arbitrarily close to (a,b). Then LiMiT
OF f(z,y) As (x,y) — (a,b)1s L:if for everye > 0there 36 > 0s.t.:
if(z,y) € Dand9 < \/(z —a)2 + (y—b)2<d = |f(z,y) — L| <e

Notation:  lim  f(z,y) = lim = Land f(z,y) = Las(z,y) — (a,b)
(2.y)—(a.b) i

Existence of a limit:
If f(z,y) = Ly as(x,y) — (a,b) along a path Cy and f(x,y) — Lo as (z,y) — (a,b) along a path Co where Ly #
Lothen lim  f(z,y)does not exist.

(z,y)—(a,b)
Example:
1:
f:R2 R
(z,y) = 3x — 5yshow  lim  f(z,y) =8

(zy)—=(1,-1)
Lete > 0to be shown,;30 > 0s.t.0 < ||(z,y) — (1, —1)|| < dimplies|3z — 5y — 8| < e
-1
ly +1]
3z = D[ +[=5(y + D[ = 3z — 1| + 5]y + 1|
We know that |z — 1| < Jand [y + 1| < ¢

< |[(z,y) — (1, =1)|| = /(z — 1)2+ (y + 1)2 < it follows that |3z — 5y — 8| = [3(z + 1) — 5(y + 1)| <

term 2A 2020-2021 Page 13



Calculus 2, University of Groningen H.M. Goossens

So we see that ||(z,y) — (1, —1)|| < 8Jso then we can sete = gso then we see that
Iz —y) -1, =Dl <e

2:

f:R2\ {(0,0} - R

(z,y) — f(x y) = z+ > does this function have a limit at (z,y) = (0,0)?
f(z,0) =% =1 true for allxz # 0

f0,y) = i:—lforally;éo

f has no limit at the the point (x,y) = (0,0)

3:

Sometimes polar coordinates useful to decide whether function has limit.
x = rcos(f) andy = rsin(f)

@\a‘a

does f(z,y) = zzizz have a limit at the origin?

f;f;; = :2 zgzz%;i:; 2?]:;((3)) = r(cos®(0) + r2 cos®(6)) = r cos(8)(cos? () + 72 cos*(0))
Because |cos(0)| < 1for all@

Hence:

—r(1472) < rcos(f)(cos?(0) + r? cos*(0)) < (1 + r?)

Whenz,y — 0 we know thatr — 0and therefore —r(1 +72) — Oand (1 +r%) — 0 so by squeezing

theorem:  lim z,y) =0
(x7y)—>(0,0)f( )

Properties of limits:

)] = lim f(x) + lim g(x)
)] = lim £(z) — lim g(z)

Sum Law lm[f(z) + g(x
Differnece law lm[f(z) — g(x
|

Constant multiple lim[cf(z)] = clim f(z)
Product law lim[f(z)g(x)] = lim f(x) lim g(x)
Quotient rule lim[’;g;] = liml;gg where lim g(z) # 0
2(& below) im x=a

(z,y)—(ab)

lim y=0»
(z,y)—(a,b)

lim c=c¢
(z,y)—(ab)

POLYNOMIAL FUCNTION: sum of terms of the form cx™y™ where c constant and m,n > 0
RATIONAL FUNCTION: ratio two polynomials.

Definition 3:  lim  p(x,y) = p(a,b)

(@,y)—(a,b) ) )
. . : _ p(z,y plab) _
Definition 4: (%y%l_)nl(a’b) q(z,y) = o y1)1—>(a b E = Hah) = q(a,b)
Definition 6: f continuous at (a,b)if lim  f(z,y) = f(a,b). Continuous on domain D if it is

(z,y)—(a,b)
continuous at every (a,b) € D
Definition 7: f defined on subset D of R” then lim f(x) = L means:
X—a

Ve > 03§ > 0s.t.x € Dand0 < |[x —a| < dthen|f(x) — L| < ¢
CONTINUITY OF A VECTOR:
a € Dand lim f(x) = f(a) then f continuous ata

X—a
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Derivatives of functions:

Definition 4:
Definition 1 and 2: PARTIAL DERIVATIVE OF F W.R.T. X f;(a,b) = ¢'(a) where g(x) = f(x,b)so f(a,b) =

lig £athb)—f(ab)

h—0 h

Definition 3: PARTIAL DERIVATIVE OF F W.R.T. Y ,f,(a,b) = hH}J w
h—

Notation:

fw(xvy):fx:%:(;if( ) 5;:f1:D1f:Dwf

fy(xvy):fy:%:(;if( ) g;:f2:D2f:Dyf

Rules:

To find f, regard y constante, differentiate f(z,y) w.r.t. z Finding f, similar.

Ifu= f(21,...,2,) then 2% = lim f(xl""’xi’l’x"+h’,'l"’x")_f(x1""’x") = gLf = fo. = fi=Dif

i h—0 T

Example:
D C R?where f(x,y) = 4 — 22 — 2y°
f2(1,1) = lim, LAThDZJAD) — Jipy =2h=h% — Jiy 2 — h = —

h—0 h—0
Similary f,(1,1) = 74

Cruve C parameterization: 1y = z — (z, 1, f(x,1)) = (2,1,4 — 272) = (,1,2 — 2?)

Higher derivatives:

We can also compute the second partial derivative:
(fx)wzfxx=f11—5gc(§£) 527{:%
(fa)y = foy = f12= 6y(§£) 56:6]; = 56;521/
(fy)y = fyy = fo2 = T(?si) (227!: = 2275

5 52 52
(f)e=fya=fn = &) = &L = 2%

Clairaut’s theorem: Suppose f defined on disk D that contains (a, b). If f;, and fy, both continuous
on D then fz,(a,b) = fyu(a,b)

. 2 2
HARMONIC FUNCTIONS: solution of the LAPLACE’S EQUATION: 273 + 273 =0

2 . .
WAVE EQUATION: 5t2 = a2§7’; decribes motion of waveform.

Tangent plane,linear approximation:

Definition 2: f continuous partial derivative. Then equation tangent plane surface z = f(z,y) at P(xo, yo, 20) =

Ja(@o,y0)(x — 20) + fy(x0,50) (Y — Yo)
LINEARIZATION: Definition 3: L(z,y) = f(a,b) + fz(a,b)(z — a) + fy(a,b)(y — b)
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LINEAR APPROXIMATION OR TANGENT PLANE APPROXIMATION:
R? Definition 4: flz,y) = f(a,b) + fz(a,b)(x — a) + fy(a,b)(y —b)

R3 f(m,y7z) ~ f(a>b7 C) + fm(a7b7 C)(.’L’ - a) + fy(a7bvc)(y - b) + fZ(a7b7 C)(Z - C)
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Lecture 6:

Differentiability:

Theorem 5: f differentiable at a then Ay = f’(a)Az + eAx wheree — Oas Az — 0
INCREMENT: change in value of f when (z, y) changes from (a, b) to (a+Ax, b+Ay): R3
DIFFERENTIABLE:

(1) Definition 7:If z = f(x,y) then f differentiable at (a, b) if:

Az = fy(a,b)Ax + fy(a,b)Ay + e1Az + 2 Ay

When (Az, Ay) — (0,0) thene&ey — 0

(2) Theorem 8: if partial derivatives f, and f, exists near (a, b) and continuous at (a, b) then f differentiable
at (a,b)

Differentials:

We already now that the differential of y is defined asdy = f'(z)dx wheny = f(z) Definition 9.

TOTAL DIFFERENTIAL
R?  Definition 10: dz = f,(z,y)dz + f,(z,y)dy = dm—i— dy

R3 dw = $4dx + & Sody + 6“’dz

Chain rule:

Theorem Cpnditions The chain rule etc.
Theorem 1: | z = f(z,y),z = g(t),y = h(t) ‘fl—f = g;z ‘fi"; + gi ff; equal to% = g—;% + g; Z'g
Theorem 2: z= f(z,y) 9 — g2z 4 g; g’: INDEP.VAR.: s&t
,x = g(s,t)andy = h(s,t) % = g; ‘f{i + g; gf INTER. VAR.:Z,y
DEP. VAR.: 2
Theorem 3 u=(T1,...,%n) gfi = 5‘;“1 ‘f;’t“ each z; differentiable
ot ‘}tz onty,... tm

Implicit Function theorem:

Theorem 5
PR
dr — % v
CONDITIONS:

(1) F defined on a disk containing (a, b)

(2) F(a,b) = 0,but Fy,(a,b) # 0

(3) F; and Fy, continuous on disk.

= then F'(z,y) = 0deifnes y as function of z near (a, b) derivative given by function above.

Theorem 6: similar to 5:
5
oz __ _ OFar and 62 _ _ Fy

oF —
or o F,

Where F on bphere contalmng (a,b,c)and F(a,b,c) = 0and F,(a,b,c) # Oand F,, F, F, continuous
inside sphere, then F'(x,y, z) = 0 defines z as function x and y near (a, b, ¢) then function differentiable.

o
B

o)
[
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Lecture 7:

Direction derivative:
Two dimensional:

14.6:

Theorem 1:

z = f(x,y) then we have:

Folzo, o) = ;133% f(oco-i-h,yo})L—f(a:o,yo) and fy($(],y()) _ ;ILIL% f(zo0,y0+h)—f(x0,y0) partial derivatives.

h
DIRECTIONAL DERIVATIVES:
fa(z0,Y0) is rate of change z in direction of z so the direction of unit vector j (similar for f, (x¢, yo) and z)
Theorem 2: DIRECTION DERIVATIVE of f at (z, yo) in the direction of unit vectoru = (a, b) is:

Dy f(zo,y0) = Ag}) f(x”"’h“’y"tflb)_f(‘”"’y") if this limit exists

Theorem 3: Dy, f(z,y) = fz(z,y)a + f,(z,y)bwhereu = (a, b) and f, the directional derivative.
Definition 8 GRADIENT: if f function 2 variables, then GRADIENT OF: f

Vf(@y) = (fole,y), fy(e,y) = i+ ]

Rewriting 7:

Duf(z,y) = fu(x,y)a + fy(l‘vy)b = (fa(z,9), fy(xay» {a,b) = (fa(z,y), fy(ﬂ?, y))-u
Definition 9: Dy, f(z,y) = Vf(x,y) - u

3 dimensional:

Theorem 10: DIRECTIONAL DERIVATIVES: f at (2o, ¥0, 20) ofu = (a,b,c) is:

D)uf(zo,y0,20) = }1112% f(T/OJFha’yOJrhvaﬁhC)*f(‘r"’yo’zo) if limit exists.

Theorem 11: Dy, f(xg) = %jr% M
N

Theorem 12: Duf(x7 Y, Z) = fw(l‘7 Y, Z)a + fy(l‘, Y, Z)b + fz(xa Y, Z)C
Theorem 13: GRADIENT: V f = (f,, fy, f2) = %i + %j + %k
Theorem 14: D, f(z,y,2) = Vf(z,y,2) - u

maximize

Theorem 15:suppose f differentiable function2 or 3 variables. Maximum value of Dx f(x) =
|V f(x)] and it occurs when usame direction as V f(x)

Example:

f:R?> =R by f(z,y) = 2° +y?

So V f(z0,Y0) = (220, 2Y0)

So the levels will be circles. When we draw the vectors, we see that the vector is perpendicular to
the tangent line at the circle.
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Tangent plane level surfaces:

Let S surface with equation F'(z,y, z) = k. So level surface function F. Let P(zo, yo, 20) on S.

Let C any curves on S through P. ThenC : r(t) = (xo, yo, 20). Let to correspond to P so:

r(to) = (o, Yo, 2z0) but we can rewrite this to:

Statement 16: F'(z(t),y(t), 2(t)) = k and when F differentiable then by chain rule:

Statement 17: %‘é—f + ‘;—5% + ‘%% =0

But therefore Statement 18: VF(xq, Yo, 20) - r'(tg) =0

Theorem 19: TANGENT PLANE TO LEVEL SURFACES: if VF'(z, yo, 20) 7 Othen the tangent plane
is equal to: Fy (o, Yo, 20)(z — 20) + Fy (20, Y0, 20)(y — yo) + Fz(x0, Y0, 20)(z — 20) =0

NORMAL LINE: to S at P is the line through P perpendicular to S given by:

Theorem 20: —£=%0 _ — ___Y=¥o _ _ __ 2=Z2
0 Fy(20,Y0,20) Fy(z0,Y0,20) F.(z0,y0,20)

Properties of gradient:

Let f differentiable and V f(x) # 0 then:

(1) DIRECTIONAL DERIVATIVE Dy, f(x) = Vf(x) - u

(2) vV f(x) points in direciton maximum rate increasing f at x and maximum rate |V f(x)|
(3) Vf(x) perpendicular to level curve or level surfaces of f through x

maxima and minima:

14.7:

Definition 1: Function 2 variables then:

LOCAL MAXIMUM (MINIMUM) at (a, b) if f(z,y) < (>)f(a,b) when (z, y) near (a, b)

So f(x,y) < (>)f(a,b)for all points (z,y) in some disk with center (a, b).

LOCAL MAXIMUM (MINIMUM) VALUE name of f(a,b) in this case.

Theorem 2: flocal maximum or minimum at (a, b) and first order partial derivatives f exists at (a, b) then f,(a,b) =
Oand fy(a,b) =0

CRITICAL POINT OR STATIONARY: of fif f;(a,b) = Oand f,(a,b) = Oor one of these partial deriva-
tives does not exists.

So then v f(a,b) =0

SADDLE POINT: if f;(a,b) = f,(a,b) = 0but f(a,b)is not a local maximum and not a local minimum.

Example:

D = R? then f(x,y) = 1 — |z| — |y| then f global maximum at (z,y) = (0,0)
1: D = R? then f(z,y) = 12® — 2+ y? = g(z) + h(y)
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Lecture 8:

maxima and minima continued:

f: D CR? — Rof class C? and has critical point (a,b) € D
_ _ fww(aab) fwy(a’b) — 2
d = det(HESSIAN MATRIX) = Foola ) folab)| = Joz(a,b) - fyy(a,b) — (foy(a,b))
Case 1:d > Oand fy;(a,b) > Othen flocal minimum at (a, b)
Case 2:d > 0and f,,(a,b) < Othen flocal maximum at (a, b)
Case 3:d < Othen f has a saddle at (a,b)
Theorem 7: Let f : D C R? — Rwhere (a,b) € D then f(a,b)is a ABSOLUTE MAXIMUM (MINIMUM) if f(a,b) >
() f(z,y) for all (x,y) € D
CLOSED SET: if a set contains its boundaries. the complement of this set is open.
BOUNDED SET: set that contains not all of its boundarys.
Theorem 8: extreme value theorem for two functions of two variables: if f continuous
on closed& compact set D C R”™thnef attains absolute maximum at f(z1,y;)and absolute mini-
mum f (22, y2) for (z1,y1)&(z2,y2) € D
Theorem 9: to find absolute maximum (minimum) on closed and bounded set:
(1) find f(a,b) where (a,b) critical point in D
(2) find extreme values on boundaries
(3) the largest (smallest) value of step 1 and step 2 is the absolute maximum (minimum) value.

Lagrange multipliers

14.8:

Theorem 1: When V f(zo, yo, 20) and Vg(zo, yo, z0) where Vg(zo, Yo, z0) 7 0 there exists LAGRANGE
MULTIPLIER A s.t. V f (2o, Yo, 20) = AVg(zo, Yo, 20)

PRrROOF:

t — r(t) parameterization of a curve in Ss.t.r(t) =a

Then (f or)(t) extremum at tg

Hence & f(r(to)) = V f(r(to)) - '(to) = Vf(a) - ¥'(tg) = 0

This holds for all curves in Sata € S

Together with the tangent vectors span tangent plane of Sata € .S

So V f(a) LS@aand hence is parallel to Vg(a)

Method lagrange multipliers:

Find maximum& minimum values f(z,y, z) to the constraint g(x, y, z) = k assuming extreme values
exists, and Vg # Oong(z,y,2) = k

(1) find all values s.t. vV f(x,y,2) = AVg(x,y,z)and g(x,y, 2) = k

(a) fu(z,y, 2) = Agz (7, y, 2) and fy(mv Yy, z) = /\gy(xv y,z)and f.(,y, 2) = A\gz(2,y, 2)

(2) evaluate f at the founded values of (z,y, z) the largest: maximum value of f smallest: minimum
value of f

Theorem 16: LAGRANGE MULTIPLIERS TWO CONSTRAINS:

v f(x0, 0, 20) = AVg(z0, Yo, z0) + uVh(zo, Yo, 20)

So then f, = Agy + phy and fy, = Agy + phyand f, = Ag. + ph,
Furthermore g(z,y, z) = kand h(z,y,2) = ¢
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Lecture 9:

Double integral:

b

Definition 1: RIEMANNSUM: Z f(z})Az and Definition 2: INTEGRAL: [ f(z)dz = lim f(z})Ax
i=1 a n—00
SAMPLE POINT (27}, y;;) in each R;;

Definition 3:So then we have that V = Z Z @y, y55)AA

1=17j=
VOLUME of the solid S that hes under fand above rectangle R

Definition 4:V =  lim Z Z f(@gy5)AA

(m,n)—o0 ;=1 =1

Definition 5: DOUBLE INTEGRAL of f over rectangle R is:

[ ] f(z,y)dA= lim 5 Z fay5)AA
R (m,n)

m,n)—00 ;=1 j=1
If this limit exists.
fisINTEGRABLEif the limit in definition 5 exists.
DOUBLE RIEMANN SUM: the double sum in definition 5.

Definition 6:
If we choose (77;,y7;) = (a?“ yz) then we get:

fgf(x’ y)dA - m,lq%,m Z Z f(l"“yz)AA

So therefore, if f(x,y) > Otheanolume lies above rectangle R and below surface z = f(x,y)isV =

[ fz,y)dA
R
Midpoint rule:

m n
J[F(X,y)dA =73 > f(z,y;)AAwhereZ; midpoint [x;_1, z;] and 7; midpoint [y;_1, y;]
R i=1i=1

Iterated integarls:

Suppose f integrable function on R = [a, b] X [c, d]
PARTIAL INTEGRATION W.R.T. Y: held the other variables fixed and integrate with respect oty

We see that A(z ff x,y)dy

Definition 7:fA(x)d:E = f[f f(x,y)dyldx

a a ¢
ITERATED INTEGRAL: The integral on the right side.
Theorem 10: Fubini’s theorem: f continuous on rectangle: R = {(z,y)la < z < b,c < y <
d} then:

J [ fy)da= fffwydydfﬂ—fffﬂcydwdy
Theorem 11: 4
ffg y)dA = fg dz [ h(y)dy where R = [a,b] x [c, d]

c
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General double integrals

15.2:

To define [ [ fdAwhere D bounded,let Rrectangle containing D Extend f to R by defining:
D

f(z,y)if(z,y) € D

0if (z,y) ¢ D

Defintion 2: We define [ [ fdAto be [ [ f™'dA
D R

Definition 1: f**(z,y) =

Elementary regions in R2

Type 1

2

Definition g1&go continuous, but need not
to be defined by single formula

h1&hs continuous need not to be
defined by single formula

Region D | D = {(z,y)la <z < b,g1(x) <y < go(x)}

D= {(x,9)c<y<d hi(y) <z <ha(y)}

integral J [ flz,y)dA = [ flz,y)dA =
bgzD(w) dﬁfzy)
JJ fly)dyde [ fla,y)dzdy
a g1(z) ¢ a(y)

Definition 3

Definition 4

ANNULUS: Region between two circles.

Properties double integrals:

Property 5:
ff (z,y) +g(z,y)|dA = fffﬂﬁydA—l-ffga:ydA

Property 6:
for constant ¢ we have [ [cf(z,y)dA=c [ [ f(z,y)dA
D D

Property 7:
If f(z,y) > g(z,y) for all (z,y) € D:
ffffvydA>ff9xydA

Property 8:

If D = Dy U D5 such that Dy and D5 does not overlap then:

[ [ f@ydA=[ [ fz,9)dA+ [ [ f(z,y)dA
D D+ Do
Property 9:

[ [1dA = A(D)
D
Property 10:
ifm < f(x y) < M for all (x,y) € D:
m - A(D <fffa:ydA<MA()
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Lecture 10:

Rewrite a function to polar coordinates by:
r? = 2?y? andz = 7 cos(f) and y = rsin(6)
Definition 2:

f continuous on polar rectangle Rgiven by < a <r < banda < 6 < Swhere0 < § —a < 27
Bb
[ [ f(z,y)dA = [ [ f(rcos(f),rsin(9))rdrdd
R a a

Theorem 3:
If f continuous on polar region D = {(r,0)|a < 6 < 8, h1(0) < r < ha(6)} then:

B ha(0)

fff z,y)dA= [ [ f(rcos(f),rsin(d))rdrdd
a hy1(6)

Ea:ample.

1.

2% +y? = 4so then f(z,y) = 22 +y

2

J [ fx,y)dA = gj(r cos?(0) + rsin(0))rdrdf

rt cos?(0) + $r?sin(0)|7=3d6 = [(4cos? 0 + § sinf)df = 2(cos Osinf + 6 — 5 cos 0)|0% =7+
0

oe‘m\:l ©

wloo

1
4

Applications:

Whole paragraph 15.4 is about this:
Density
b) electric charge
c) moment (of inertia)
d) radius of gyration of a lamina
) Probability
) Joint density function
g) Expected values (X-mean and Y-mean)

(a)
(
(
(
(e
(f
(

Surface area:

Paragraph 15.5: SURFACE AREA area of a surface Definition 1: A(S) = lim Z Z ATy

m,n—oQ i=11i=
Definition 2 and 3:ifz = f(z,y) where (z,y) € D and f,&f, continuous:
= [ VI P+ @yl +1dA = [ [ /14 (3 + (%)dA
D D
Paragraph 15.6:

Triple integrals:
Definition 1: simples case B = {(x,y, z)|a < z
I m n
Definition 2: TRIPLE RIEMANN SUM Z >y (xfjk,y;jk,zi*jk)AV

I m n
Definition 3: TRIPLE INTEGRAL IS EQUAL TO:Igff(x,y,z)dV = lim 3737 (@, Ui 2p) AV

l,m,nﬁoo i=1 j:l k=1
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exists.
Fubini’s theorem for triple integrals, theorem 4:

bdgq
If f continuous on B = [a,b] X [¢,d] x [p,q|then [ [ [ fdV = [ [ [ f(z,y, z)dzdydz = five other or-
B acp

ders o)
u2(2,y

Definition 6: [ [ [ f(z,y,2)dV = [[[ [ [f(z,y,z)dz]dA
E D wuy(z,y)

Definition 7: If porjection D of FE onto zy— plane of type 1:
b g2(%) uz(z,y)
[[[f@yz)av=[ [ [ [flx,y z)dzdyds
E a g1(z) ui(z,y)
Definition 8: If projection D of E onto xy— plane of type 2:
d h2(y) uz(z,y)

J[[fl@y=2dv=[ [ [ [flz,y,z)dzdzdy
2 ¢ hi(y) ui(z,y)
The second part of this paragraph is about applications.

Example:

W is a graph like a icecream cone.
W =region above the cone z = /22 + y2 and below the sphere z = /1 — 22 — 32
Vi—a2—y?
J[ [ fxyz)adv=/[[ [ dzdA
w D farry?
Boundary of shadow D by /22 + 32 = /1 — 22 — y2 & 22 +y? = 1 —22 —y?so D is disk of radius %
—22 \[1—22—y?
[ fz,y,z)dzdydx
/.7)2-‘1-2/2

sk
[SIE

|
[N

|

8
[

Other types of coordinates:

Name T = y= z = r&p =
Cylindrical r cos(d) rsin(f) z tan(f) = £ 15.7:Definition 1 from polar
system z \x2 + 92 15.7:Definition 2 | From rectangular
Spherical | psingcosf | psingsind | pcos o \/x2 +y2 + 22 | 15.8:Definition 1,2

Corresponding integrals:
15.7:Definition 4:
B h2(0) uz(rcos(0),rsin(0))

J[[fX,y,z)av =/ [ Ik f(rcos@,rsin@, z)rdzdrdf
E a hy(0) ui(rcos(0),rsin(0))
Where D = {(rf)|la < 0 < B,h1(0) < r < ha(f)}and E = {(z,y, 2)|(z,y) € D,ui(z,y) < z <

u2(x7y)}

15.8:Definition 3 [ [ [ f(z,y,2)dV = [
E c

Where & = {(p,0,¢)la <p<ba<f<p
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Lecture 11:

Change of variables: double integrals:

paragraph 15.9:
Definition 1,2:

b d d
J fx)de = [ f(g(w)g'(w)du= [ f(z(u))g—iduwherex =g(u)anda = g(c)and b = g(d)
Definition 7: JACOBIAN of the transformation T given by = g(u,v) and y = h(u,v) is:

0wy _ |55 T
rYy) u v
O(uv) & %

__ 0z Oy Oz Oy

 Ou v Ov Ou

ou v
Definition 9:and after a lot of computations: If we have a mapT : D* — D (so from one map to
another map) and T bijective and C! Then f : D — Rintegrable then substitution rule:

fgf(x,y)dzdy: ij: flx(u,v), y(u, v))‘ggizg dudv

Example

T:(r0) — (z(r,0),y(r,0)) = (rcos(d), rsin(d))

Then ggzz; =r

Sofgf(a:,y)dxdy:fo* f(rcos(0),rsin(0))rdrdf

Change of variables: triple integrals:

When we have T  one-to-one transformation maps region S in uvw space onto region R in zyz-space by:
x = g(u,v,w)andy = h(u,v,w)and z = k(u, v, w) then:
ol o) ol

JACOBIAN:% = g—z & %—y and Definition 13:
(g g g
ou v  Ow
ffff(x,y,z)da:dydz:ffff(x(u,v,w),y(u,v,w),z(u,v,w))‘g((z’im dudvdw
w S Y
Example

x = psin(¢@) cos(f) and y = psin(¢) sin(f) and z = p cos(¢)

Vector calculus:

16.1:

Definition 1: VECTOR FIELDS: D C R™and F' : D — R then this function F'is called a vector field.
Definition 2: E C R3then vector field onR3is function F that assigns each (z,y,z) € Ein three-
dimensional vector F(x,y, 2)

After this, there are a lot of examples.

GRADIENT VECTOR FIELD/CONSERVATION: F': D C R™ — R™if there exists f : D - Rst. F =V f
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SoV f(z,y) = folw,y)i+ fy(z,y)j inR?
In this case f is called POTENTIAL FUNCTION for F'

Line integrals:

16.2:

Definition 1: We start with C given by x = z(t),y = y(¢t) wherea <t < b
SMOOTH CURVE:

C'smooth curve in R” with parameterr : [a,b] — R™andt — r(t)
Withr'(t) # Ofor all¢ € [a, D]

b L
Then length of C given by L = [ ||v/(¢)||dt = [ ds
a 0
Where S'is called the arclength, where %5 = ||r/(t)|
t
Sos(t) = [ [Ir'(7)lldr

Definition 2:if f smooth curve C then the line integral of f along C'is [ f(z,y)ds = ILm flzr, y)As; if
C n o0
the limit exist. (w.r.t arclength)

Definition 3:ff(x7y)d8 = fbf(x(t),y(t)) (%)2 + (%)2‘#

C'is called piecewise smooth iff C'is an union of finitely many smooth curves C; wherei =1,... ns.t.
the initial point of C; equals the endpoint of C;_; wherei =2,....n

Then [ fds := i [ fds
c i=1¢;
b
Definition 7aline integral w.rtz [ f(z,y)dz = [ f(x(t), y(t))a' (t)dt

b
Definition 7bline integral w.r.ty [ f(z,y)dy = [ f(x(t), y(t))y'(t)dt

Definition 8: When we have a line that starts at rg and ry then we haver(t) = (1—¢)ro+tr; where 0 <
t<1

b
Definition 9: LINE INTEGRALS IN SPACE: [ f(z,y, z)ds = [ f(z(t),y(t), z(t))\/(%)2 +(@)2 4 ()24

C
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Lecture 12:

Line integrals
Definition 13: F continuous vector field, defined smooth curve C given by r(t),a < t < b. Then LINE
b L
INTEGRAL OF F ALONG C: [ F(r(t)) -r'(¢t)dt = [ F - Tds
0

WhenF = Pi+ (j + Rk we have:
[F-dr = [ Pdz+ Qdy+ Rdz
c c

Example:
F force field, then the line integral of F along the curve C'is the work required to move a particle

along C

r:[0,1] — R*— wherer(t) = ti + 3t%j + 2t’k
F(z,y,2) = 2®i+y°j + 2k

1 1 1
JFdr = [F(r(t))-r'(t)dt = [(t31 + (3t%)2%) + 2t3k) - (1 + 6tj + 6t°k)dt = [(t3 + 54t® + 12t1)dt =
C 0 0 0
I+1r=111

Orientation of a curve:
16.3: ,
Theorem 1: [ F'(z)dx = F(b) — F(a) (part 2 of fundamental theorem of caluclus)

Theorem 2: C'smooth curve given by r(t) wherea < ¢ < b then:

JVf-dr=f(x()) - f(r(a))

c

Theorem 3: F - drindependent of path in Diff [ F - dr = Ofor every closed path in C

c
Theorem 4: Fundamental theorem of line integrals:
Suppose F continuous open connected D. If f F - drindependent of path in D then F—,conservative

c
vector field on D that is, there exists a function fs.t.vf =F

PRrROOF: o)
.y

Let f(z,y) = [ after few computation we see that %f(x, y) =0+ %F - dr
(a,b)

IfF = Pi+ Qjwe see that [ F-dr = [ Pdz+QdythenF = Pi+Qj=§li+ §lj=vy
C2 CQ

(for full proof see page 1147)
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Lecture 13:

Theorem 5:

F continuous vector field. F independent of path< ¢ F' - dr = 0 for all closed curves C

§ stands for the integral on a closed curve.

PROOF:

=

Let C be closed curve. Then we havefF dr = fF dr+fF de= [ F-dr+ [F-dr=0
—Cl Cz

As —C7 and Cs have the same initial and final pomts andF is independent of path.

P

Let C be the closed curve which is union of C7 and Cq

O—IFdr—der der—der—der

7C2 02
So f F.dr= f F - dr which is exactly what we wanted to show.
Cl 02
Definition:
A domain is called SIMPLY CONNECTED if it is connected and all closed curves in D can be contracted
to a point.

Theorem 6:

Let F = Pi+ Qjbe a factor field on simply connected domain D € R? with P&(Q being C'*
Then %—Iy) = %g < F'is conservative.

Paragraph 16.4:

Green’s theorem:

Let D bounded domain in R? with boundary Notation: 9D consist of finitely many simple chose piece-
wise C'! curves
Orient 9D s that D is on the left as one traverses 9D

Let F = Pi+ Qj be aC"! Vector field on D
Then f Pdx + Qdy = ff £ — —)dA

Relates line integrals to double integrals.

LHS might help to compute RHS or vica versa.

PROOF:

There is a really long proof in the book

Theorem 5: The Green’s Theorem gives the following formulas for the area of D:

A:fxdy:—fyd:c:%fxdyfydz
C C C
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Curl and divergence

Paragraph 16.5:
oy 3 . : d
Definition 1: CURL: curlF = (%—I; — part?alz)l + (98 — 2Ry5) 4 (92 — %—S)k
o 30 30 d
Remember: V = ig- +igy T k5
Definition 2:curlF =V x F
Theorem 3:if f function 3 variables, continuous second order partial derivatives then curl(v f) = 0

PROOF:

i k
2 ) 2 92 92f s 92 9%F \s 22 22

CU.I'l(Vf) = VX (Vf) = gii % g; = (Oyafz - Bzafy)l (azafx - Owafz)J + (Owafy - ayafcv)k =
dr 9y 0z

0i+0j+0k=0

Definition 9:divF = 6—1: + % + %—f where divF stands for the diverengence of F

Definition 10:divF = Vv - F

Theorem 11:ifF = Pi + Qj + Rkvector field on R and P, Q, R continuous second order partial
derivatives, then div curlF =0

PRrROOF:

usediv curlF = v - (Vv x F)

LAPLACE OPERATOR: V2 = V - Vname comes from relation to LAPLACE’S EQUATION: V2 f = % +
L+ 3L=0

Definition 12: Rewrite Green’s theorem in vector form: § F - dr = ¢ F - Tds = [ [(CurlF) - kdA
c c D

Definition 13:or: § F-nds = [ [ divF(z,y)dA wheren(t) = ﬁ:égli — |“£:Ef))|3
C D
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Lecture 14:

16.6:

Let r vector function of two parameters

definition 1:sor(u,v) = z(u,v)i + y(u,v)j + z(u,v)k

Definition 2: PARAMETERIC EQUATIONS: & = x(u,v),y = y(u,v) and z = z(u, v)

D is the region in the uv— plane wherer(u,v) is defined.

PARAMETERIC SURFACE: the set of all points (x,y,2)inR? that satisfies the second definition and
where (u, v) varies throughout D

GRID CURVE: a curve ofr(u, v) where we have on of the parameters as a constant.

SURFACE OF REVOLUTION: surface that exists by rotating the curveu = f(z) wherea < z < babout
the x— axis, where f(z) >0

If (z,y, 2) a point on this surface S then:

Definition 3:x = z,y = f(x) cos(f) and z = f(z) sin(f) where 0 the angle of rotation.

So domain is equal to:

a<z<band0<0<2rm

Tangent plane:

The partial derivatives of r(u,v):

Definition 4:r, = 22 (ug, vo)i + %(uo, 0)j + 92 (uo, vo)k
Definition 5:r, = %(uo,vo)i + %(uo,vo),] + g—i(uo,vo)k

ifr, xr,
neq0 for all values, then the surface S'is SMOOTH
TANGENT PLANE: contains r,&r, and the vector r, &r, are normal vector to the tangent plane.

Definition 6: S smooth curve, given by r(u,v) = z(u,v)i + y(u, v)j + z(u, v)k where (u,v) € D
S covered just once (u,v) through domain D then SURFACE AREA:
= [ [ |ry X ry|dA wherer,&r, like above.
D

Special case:

z=zandy =yand z = f(x,y) thenr, =i+ (%)kandry =j+ (g—i)kthen

i j k
Definition 7:r, xr, =|1 0 % =-93_ 9 itk
01 B
So Definition 8:|r, x r,| = \/( )2 + df 241= \/1 a;)z
Definition 9:so the surface area formula will become: A(S) = ff \/1 +(£)2+ (g—Z)QdA
D

Surface integrals:

16.7:
Definition 1: SURFACE INTEGRAL OF f OVER THE SURFACE S by the riemann sum: [ [)Sf(z,y, 2)dS =
lim f(P5)AS;

m,n— oo

Definition 2: [ [ f(z,y,2)dS = fff r(u,v))|r, X r,|dA
S
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Definition 4: [ [ f(z,y,2z)dS = fff(x,y,g(x,y))\/(%)Q + (%;)2 + 1dA
s D

Oriented surface:

Two unit normal vectors n; and n, wheren, = —n;
ORIENTED SURFACE: if it is possibl eot choose nat every (x,y, ) s.t. ,n varies continuously over S.
When we choose such ann,it gives.S ORIENTATION.

_ 993 9g;
Definition 5: for a surface z = g(x, y) we can say that: n = M

1+(52)2+(52)2
k > 0so upward orientation. If S'smooth thenn = I:ui:ul

Flux:

Let nnormal vector ,p(z,y, z) destiny and v(z, y, z) velocity field then the rate of flow per unit is
given by pv
If we divide Sinto small paches S;; we obtain that the mass of fluid per unit time crossing S;; in the
direction ofn is equal to: (pv - n)A(S;;)
So therefore we know after some steps that:
Definition 6: [ [ pv-ndS = [ [ p(z,y,2)v(z,y,2) -n(z,y, 2)dS

s s

If we write F = pv we obtain [ [ F - ndS
S

Definition 8: F cont.vector field defined on S with unit normal vector n then the SURFACE INTEGRAL
OF F OVER SIS EQUAL TO:
[ [F-dS = [ [F-ndS This integral is also called FLUX of F across S

s S

Definition 9: [ [F-dS= [ [F - (r, xr,)dA
S D

This assumes that orientation induced byr, x r,. Opposite orientation?Multiply with —1

If we use z = g(x,y) we see that:
Definition 9:F - (r, x r,) = (P) + Qj + Rk) - (—§%i — 5%i+ k)
So then definition 10: [ [F-dS = [ [(—PJ2 — g—g + R)dA

S D

upward orientation of S. otherwise multiply with —1

Application:
1: Eis elictric field, then [ [ E-dSis ELECTRIX FLUX OF E THROUGH S.
5
Definition 10: GAUss’S LAw: Q =&y [ [E - dS
s

Qis the net charge enclosed by a closed S, £ is a constant(permittivity of free space)

2: u(x,y, z) temperature body at (z,y, z) then heat flow: F = —KVu K is constant called conduc-
tivity. Rate of heat flow across the surface Sin the body: [ [F-dS = —K [ [ Vu-dS
3 3
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Lecture 15:

16.8:

POSITIVE ORIIENTATION OF THE BOUNDARY CURVE C'if you ”walk” in positive direction around C with
head pointing direction n then surface will be on your left.

Stokes’ theorem: S oriented piecewiese-smooth surface bounded by simple,closed,piecewise-smooth C' with
positive orientation.

F vector field, components has continuous partial derivatives on open region R and S € R3 then:
[F-dr= [ [cuwlF-dS
c 5

Definition 1:int [cwlF -dS = [ F-dR

S
Where 0S—,is the positvely oriented boundary curve of the oriented surface .S

Definition 3:if S; and S;oriented surface,same oriented boundary curve C, both satisfy Stoke’s
theorem then:
J [cwlF-dS= [F-dr= [ [ curlF -dS

Sl C S2

v:the velocity field in fluid flow.
The line integral f v - dr > Othen positive circulation (and otherwise negative, obviously).

We see htat f v dr = f curlv-dS = [ f curlv-ndS ~ f curlv(Py) n(Py)dS = curlv(FPy) n(Py)ra

We see that Po (0, Yo, ZO) a point in the ﬂuld and S, small disk with radius a and centered at Py
whnea — 0:
Definition 4: curlv(FP) - n(Py) = liIr%) ﬂ—iz [ v-dr

a— c,

The divergence theorem:

16.9:
Definition 1: [ [F-ndS = [ [ [divF(z,y, 2)dV
5 E

Divergence theorem: F simple solid region and .S boundary surface F given wiht positive outward
orientation.F vector field, with component functions continuous partial derivatives on open region
containing F/

Then:ffF~dS=fffdideV
S E

Assume a region E closed by the surace S; and Sy where Sy lies inside So

n; &ns outward normals S1&.55 then boundary surface of Fis.S = S USsandn = —njonS;andn =
n, on S

Then we receive: Definition 7:

[ [ [divFdV = [ [F-dS = [ [F-ndS = [ [ F-(—n;)dS+ [ [ FonydS = — [ [F-dS+ [ [F-dS
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Application:
1-
We know that E(x) = |
Then we see that the electirc flux through any closed S ecloses the origin is [ [ E - dS = 47eQ
s
Definition 8: [ [ [divEdV =— [ [E-dS+ [ [E-dS
E 5 s

(like definition 3 of 16.8)
And because we see that divE = Owe now that [ [E-dS= [ [ E-dS
5 51

7 x where @ electric charge at origin,x = (x,y, z) and E electric field.

2:
When we have F = pv so the rate of flow per unit area,Py(zo,0, 20) a point in the fluid, and By ball
with center Py and radius a then divF (P) ~ div]F(P,) for all points in P in B, since divF continuous.

Flux over the boundary sphere S:
ffF dsS = fffddeV fffdwF (Po)dV = divF(Py)V(B,)

Whena — Osuggest Definition 8 dwF(PO) = lim V(B 5 f F-dS

divF(Py) net rate of outward flux per unit volume at P, (reason name divergence).
If divF(P) > 0 : SOURCE if divF (P) < 0 : SINK
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